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Abstract

River ice processes are complex phenomena that are affected by many factors,
including meteorological conditions, thermal inputs, hydraulic conditions and
channel geometry. In this study a one-dimensional model called RICE is devel-
oped for simulating ice processes in rivers. In the river hydraulics component,
the flow condition is determined by an implicit finite-difference solution of one-
dimensional unsteady fiow equations. In the thermal component, distributions
of water temperature and ice concentration are determined by a Lagrangian-—
Eulerian solution scheme for equations of transport of thermal energy and ice.
A two-layer formulation is introduced fo model the ice transport. In this formula-
tion the total ice discharge is considered fo consist of the surface ice discharge
of suspended ice distributed over the depth of the flow. The effect of surface ice
on ice production, as well as the formation of skim ice and border ice, is
included. The dynamic formation and stability of the ice cover is formulated
according to existing equilibrium ice jam theories with due consideration to the
interaction between the ice cover and the flow. The undercover ice accumulation
is formulated according to the critical velocity criterion. The growth and decay
of the ice cover is simulated using a finite-difference formulation applicable to
composife ice covers consisting of snow, ice and frazil layers. The model has
been applied fo the St. Lawrence River and the Ohio River system, with simulafed
results comparing favorably with fieid observations. Future improvements on
the mathematical model as well as theorefical formuiations on various ice
processes are discussed.

Cover: Ice floes on the Salmon River, Idaho.

For conversion of Sl metric units fo U.S./British customary units of measurement
consult Standard Practice for Use of the International System of Unifs (Sl), ASTM
Standard E380-89q, published by the American Society for Testing and Mater-
ials, 1916 Race St., Philadelphia, Pa. 19103.
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A Mathematical Model for River Ice Processes

A.M. WASANTHA LAL AND HUNG TAO SHEN

INTRODUCTION

Mathematical modeling techniques are increasingly being used to analyze river hydraulics. The numerical
simulation of river hydraulics under open water conditions using one- or two-dimensional models is at an ad-
vanced stage due tothe developments in the last few decades (Mahmood and Yevjevich 1975, Cunge et al. 1980,
Fread 1985). When ariver is subjected to ice conditions, the modeling of ice processes becomes important, not
only because of the need to understand river ice phenomena, but also because of their effect on the hydraulic
condition.

Theriverice phenomena include the formation, evolution, transport, dissipation and deterioration of various
forms of ice. These processes are not only affected by the ambient atmospheric conditions and the river geome-
try, they also interact in a complex manner with the flow condition in the river. Many river ice processes are
not completely understood. However, by using existing theories, acomprehensive mathematical model can be
developed. Such a model can be used to provide a continuous description of the river ice phenomena based on
alimited amount of field data. From the engineering point of view, the model will assist engineers in evaluating
the possible beneficial and detrimental consequences of the design and operation of river control works. A
mathematical model can also be used by researchers to identify crucial gaps and weaknesses in the current
knowledge of river ice. In addition, by interpreting the field data in a comprehensive manner, mathematical
models can also be used to test new hypothetical formulations to advance our understanding of river ice pro-
cesses. Since field data are often incomplete and the quantitative extrapolation from laboratory physical models
to field conditions is still uncertain, this last aspect is particularly useful in river ice research.

Because of the complexity of river ice phenomena and the limited current understanding (Shen 1985), the
development of ariver ice model requires the maximum use of existing theories and mathematical techniques.
Inrecent years a number of river ice models have been developed. Most of these models use back water analysis
in the hydraulic computation. These models include ones developed by Simonsen and Carson (1977), Petryk
and Boisvert (1978), Michel and Drouin (1981), Petryk et al. (1981a) and Calkins (1984). Ice concentrations
and water temperature distributions along the river are not considered in these models. Shen and Yapa (1984)
developed a model that uses unsteady flow analysis in the hydraulic computation. The model also simulates
water temperature and ice concentration distributions along the river by considering the longitudinal transport
of thermal energy and frazil ice. A simulation model has been developed recently by Houkuna (1988) based
on the model of Shen and Yapa and the unsteady flow model developed by Fread (1985). This model, however,
does not consider mechanical thickening of the ice cover. Almost all of these models simulate river ice processes
with various degrees of simplifications in the analytical formulation of physical phenomena.

River ice processes

At the beginning of winter, heat loss from the water surface due to the low ambient air temperature will
exceed heat gain due mainly to the short-wave radiation. As a result the water temperature can drop to the freez-
ing point. Further cooling will lead to supercooling of the river water and frazil ice formation. In slow flow areas,




where the urbulence intensity is not strong enough 1o mix the water or the frazil crystals over the depth, skim
ice can form in the river even before the cross-sectional averaged water temperature drops to the freezing point.
Frazil ice crystals, when mixed over the flow depth due to turbulence, can grow in size, multiply in number and
agglomerate to form porous flocs. As the frazil particles and flocs grow in size, the increase in buoyancy can
lead to the formation of a moving surface ice layer with a much higher concentration than the ice remaining in
suspension.

The continuous increase in the surface ice concentration may lead to the formation of ice pans. Ice pans grow
in size and strength when they travel along the river due to the freezing of interstitial water and the further
accumulation of frazil ice, both around the circumference and on the bottom of pans. Ice pans may either sinter
into still larger ice floes if they travel over a long distance, or they may break into fragments when passing
through rapid sections. Partial coverage of the water surface by the moving surface ice layer results in a re-
duction of the net ice production due to the insulating effect. The downstream transport of the surface ice will
cease when it reaches an artificial obstacle or a river section where an ice bridge across the river is formed by
the congestion of the surface ice run. Once an obstacle is reached, the incoming surface ice will accumulate at
its upstream side and extend the ice cover upstream. Frazil ice remaining in the suspension underneath the
surface layer will be transported downstream and deposited on the underside of the ice cover to form frazil ice
accumulations or hanging dams.

The phenomenon of ice bridging is not well understood, even though ice bridges usually form at the same
location each winter. The formation of an ice bridge at a river section is related to the ice transport capacity of
the section and the rate of ice discharge coming from upstream. The maximum rate of ice discharge that can pass
through ariver without forming anice bridge depends onthe flow velocity, the channel top width between banks
or border ice boundaries, the surface slope, and the size, concentration and material properties of the ice in the
surface layer (Ackermann and Shen 1983, Matousek 1984b, Shen et al. 1988).

Once an ice cover is initiated, it may progress upstream through the accumulation of incoming surface ice
floes and slush. The rate of progression of the leading edge of an ice cover depends on the rate of surface ice
supply and the thickness of the new ice cover, which is governed by the flow conditions at the leading edge.
Whenthe flow velocity is relatively low, incoming ice floes will form a smooth ice cover accumulated by a single
layer of ice floes. This process is often called juxtaposition. During the freeze-up period, when the surface ice
consists mainly of highly deformable frazil slush or loose frazil pans, the juxtaposition mode may not be clearly
identifiable due to the compression of the surface ice elements. At a higher velocity range, surface ice elements
can underturn or submerge at the leading edge to form a thicker ice cover. This mode of ice cover formation is
often termed narrow jam or hydraulic thickening (Pariset and Hausser 1961). In this mode the ice cover thickness
is limited by a critical under-cover entrainment velocity. When this velocity is exceeded, the ice particles that
are swept under at the leading edge will be washed downstream. leading to the cessation of the leading edge
progression, until flow velocity at the leading edge is reduced. Such a reduction in velocity can be caused either
by the change in river discharge or the backwater effect induced by the increase in the size of the under-cover
accumulation of ice.

The cover formed under any hydraulic condition has to be thick enough so that it is capable of withstanding
the net force acting on it. Forces acting on an ice cover include current drag, wind drag, weight of the ice cover.
and bank shear. Theice covercan collapse any time during the winter when the strength of the ice cover. together
with the bank shear, cannot support the external forces acting along the direction of flow. During freeze-up.
mechanical thickeningor“shoving” will occur until the cover reaches a thickness that is capable of withstanding
the external forces. The freeze-up of a thin solid ice cover in the granular surface ice accumulation can signifi-
cantly increase the strength of the initial ice cover.

The surface ice that is swept under the ice covercan travel along the underside of the ice cover and be deposit-
ed downstream. This deposition, together with the similar deposition of frazil ice that remained in suspension
when entering the ice-covered region, can lead to the formation of frazil hanging dams or frazil ice jams. Frazil
hanging dams or frazil ice jams often occurunderice covers downstream of rapids. If the flow velocity increases
at a later period, loosely accumulated frazil ice dams can be eroded and transported farther downstream.

These surface and under-cover ice accumulation processes have been presented in the context of ice cover
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Figure 1. River ice processes.

formation during freeze-up. Similar processes can occur when a large volume of surface ice floes is released
during the break-up of the ice cover upstream. In this case the leading edge of the intact downstream ice cover
often acts as the obstacle that initiates the ice accumulation process. The dynamic process of the movement and
accumulation of ice fragments after the break-up of the ice cover is similar to that of the surface ice run during
freeze-up. Both of these processes involve relatively small time scales.

As heat exchange continues over a consolidated ice cover, water-filled voids in the granular ice mass will
freeze from the water level downwards. This process is faster than black ice growth, and it can extend into the
frazil layer if it exists. The existence of a snow cover can affect the thermal growth and decay of the ice cover.
The snow cover provides an insulation layer that can retard the growth of the ice cover thickness. However,
when the snow-ice interface submerges below the water level, the snow—ice growth on top of the cover can
accelerate the growth of the ice cover thickness. Figure 1 shows a brief summary of these river ice processes.




Objective of the study

In this study a comprehensive one-dimensional river ice model called RICE was developed. The model in-
cludes submodels for river hydraulics, distributions of water temperature and ice discharge, formation of ice
covers, formation and erosion of under-cover ice accumulations or hanging dams. thermal growth and decay
of ice covers, and stability of ice covers. Existing theories on each ice process were reviewed and weaknesses
identified. The model makes maximum use of the existing information, with improvements on analytical and
mathematical formulations. Each ice process is modeled in a separate subroutine. With this arrangement the
model can easily be modified to accommodate future improvements when new theories become available. The
model can be used as a diagnostic tool to determine important factors that control the ice conditions in ariver.
This will provide guidelines for developing systematic field programs of data collection, designing of ice
control projects and planning flow regulations. From the point of view of ice research, it is expected that by
applying the model to rivers with existing field data, the shortcomings in the existing theories can be identified
for future improvements. Together with weather forecasts, the model should also be able to forecast ice condi-
tions in a river. Because of the limitations in the current knowledge on river ice, the model should first be
calibrated with the field data before being used in forecasting.

UNSTEADY FLOW COMPUTATIONS

Governing equations

The hydraulics of one-dimensional river flow can be described by Saint Venant equations. These equations
represent the conservation of mass and momentum n the river. For ariver with a floating ice cover, the equation
of conservation of mass is given as

%0, 9 g M
oxr ot
where Q = discharge
A = net flow cross-sectional area
x = distance
t = time.

The momentum equation is given as

6Q+ (ZQaQ 0> N + pgA aH+ iTitpptn) =0 2
= = =-=.— — iTi = 2)
P P i) TR R (PiTi+pyTsh) (

where H = water surface elevation (H = 2y + d, + 15,)

g = gravitational acceleration
zp, = bedelevation
dy, = depth of flow

pp = wetted perimeters formed by the channel bed

pi = wetted perimeters formed by the ice cover
T, = shear stresses at the channel bottom
T, = shear stresses at the ice/water interface

Iy = submerged thickness of the ice cover.

Numerical formulation

Finite-difference formulation of St. Venant equations

Finite-difference discretization for St. Venant equations requires the riverto be divided intoasufficient num-
ber of reaches. The discretization should be done in such a manner that the average of the cross sections at the
upstream and downstream ends of any reach closely represent the river reach. Junctions where different river
branches meet have to be considered as nodes. Schematization of a river involves numbering river reaches and
nodes. A method of numbering nodes and reaches for efficient computation is explained later.
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The four-point implicit method (e.g. Amein and Chu 1975, Potok 1978, Potok and Quinn 1979) has many
advantages over other methods, and it is capable of simulating a wide spectrum of wave types and river charac-
teristics (Fread 1985). In this study the four-point implicit model for river networks developed by Potok and
Quinn (1979) is used. The finite-difference formulation of St. Venant equations is presented in this section. In
the finite-difference scheme, the river is discretized into a series of reaches. These reaches are connected by
cross sections at their upstream and downstream ends. These cross sections are called nodes. The notation used
is shown in Figures 2 and 3. The finite-difference grid on the x—¢plane is shownin Figure 4. The finite-difference
form of the continuity equation can be written as

(6loF- o)+ (1- 0)(Qa- @l -+ [Tg(HG - Hol+ T(HE - Hu)] =0 (3)
where 0 = discharge
H = stage
d. u = subscripts representing downstream and upstream ends of the reach
p = superscript indicating the solution at time level r+A¢
T = top width
0 = weighting factor = Ar /At

" ' Datum X
T T LSS LGS ZEST |

s L) dx 4 /l\ dx N dx; O
Noc s Reach 1 *‘2 2 —& 3 :

Figure 2. Example of finite-difference discretization.

“eii'vi”."e r

Figure 3. Channel cross section with an ice cover.
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tL — X = Ax
X Flow
UPSTREAM DOWNSTREAM
Av = length of a reach
At = time step
Aty = fraction of Ar as shown in Figure 4 .

To ensure numerical stability and accuracy, the value of A should be greater than 0.5 (Fread 1985). When
0 = 1. the scheme is fully implicit and unconditionally stable, except that the accuracy is reduced to O(Ar). A
value of 0.75 has been suggested to ensure stability and minimize loss of accuracy. The finite-difference form
of the momentum equation can be written as

[G(Q{;"Q{:)‘*’(]—e)(Qd‘Qu)]z_az—g—z {o[T4(HF - Zg)-T,(H? - 2,) + A4"]

Adx 4 2
+ (1= 0)[T4(Hg~ Za)- T(Hy- Z,)+ AA"]} A‘—
X
+ (’»’;[G(Hdp_ Hup)+ (] - 9) (Hd" Hu)] Kl—
X
n2 0101 B 1 (00 + 0 ~(Qa+ Qo)) =0 @)
+ gng ;_77 d u d u 2A1
where AAT = Ay A)- teup (Ta — Ty) &)
0 =0.56(Q7 o) +(1-8)(Qs+Qu)l 6)

A =0.5{A] + AL +8[HITy + HITo] + (1-0) [HuTy + HaTs) = (Zu + tews) Ta — (Za + teup)Ta) ()

and z,and:zy = reference elevations of upstream and downstream, respectively
AJand A] = cross-sectional area of the river below reference levels at upstream and downstream,
respectively
= gravitational acceleration
= average wetted perimeter of the channel branch
n. = equivalent Manning’s roughness coefficient
top = Ssubmerged depth of the ice cover thickness.

v i%
|

Ineq4, n, represents the gross Manning's roughness coefficient of the river reach. It includes the effects of
both the flow resistance of the channel bed and the resistance of the ice cover. In the absence of an ice cover,
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ne = ny,. The derivation for a general expression of n, is presented below. The present model considers the possi-
bility of having border ice covering a fraction of the width and the main ice cover extending over a fraction of
the length of a reach. Figure 5 shows a partially ice-covered river cross section. A typical plan area of an ice-
covered reach considered in the model is shown in Figure 6, along with its longitudinal section. This riverreach
has a downstream fraction A of length covered, except for a fraction (1 — py) of the width. This type of partial
ice cover can exist due either to the formation of border ice or to the erosion of the ice cover along adeep channel
or thalweg in ariver reach. The upstream fraction (1 — &) of the length is cor idered open. except for a fraction
(1 -y, of the width.




s

In the general case of a partially covered cross section as shown in Figure 5, the friction slope and shear resis-
tance at any river cross section can be obtained using

§; = PoTutPiTi _ (PoThlo + (PoThlo +(PiTi) ®)
pgA pgA

where the subscripts / and O represent covered and open portions of the cross section, respectively. When a
fraction of the length of the river reach is covered with ice of a different width, the average energy slope of the
river reach can be determined by considering the head loss i; within a reach as the sum of the losses in the
upstream and downstream sections of the reach. The total head drop over the length of the reach is given by

hg= §f Ax=Sq, Axy + SpaAxg 9)
which reduces to

S_f =(1—A)Sﬁ,+ )\.Sm (10

where S, ¢ = average friction slope over the length of the reach
Sy, = friction slope of the upstream (1-A) fraction of the reach
Sgq = griction slope of the downstream A fraction of the river
A= _ﬁ .
Ax

Shen and Ruggles (1982) showed that

2,473 2
PoT + PiTi = Pgng (.QL) +(1+ FyB|2P8° a1
AR Iy A ),

where the subscripts I and O indicate ice-covered and open portions of the cross sections, respectively. F is
defined as

32 (p.
F= (ﬁl.) 2 En_) (12)
Ny Pb
and »; is the Manning coefficient for ice cover. The time-dependent variation of #; can be related to an initial
ice cover roughness n;;; and a final ice roughness n,,4 using the following formula (Nezhikhovskiy 1964, Shen
and Yapa 1986):
n; = ngaq + (R — Neng) ekt (13)

Values of n;,; and ng,4 have to be calibrated prior to the application of the model.
In the case of a river with no ice cover, eq 8 and 11 give

s =Pt peng PEP 001 (14)

If the ice cover extends over the entire width of the river, eq 11 reduces to

s, = PititPoty _ P28 P° 0l | (14+F

(15)
pgA pgA 1073




Forariverreachthatis fully covered over part of its length and fully open over the remaining part, Sy, is obtained
using eq 14 and Sy, is obtained using eq 15. The average friction slope over the reach can be obtained using eq
10:

43
+ M1+ F)R Pd . (16)

Si=0%n|(1- 7~)
Ad0/3

When the channel cross section is relatively uniform in a reach and the cross-sectional area occupied by the
ice cover is small in comparison to the total cross-sectional area, both P, and P4 can be replaced by an average
value P for the reach. Similarly A, and A4 can be replaced by the average cross-sectional area A for the reach.
With these approximations, eq 16 reduces to

=2 ,,?pg [(1-2) + (1 +FYBa]. amn
a 03

Using eq 17, an expression for n, can be obtained to give an equivalent roughness in Manning’s relationship
(Yapa 1983):

=250 4 (14 FY A1), (18)
Ax Ax

The same approach can be made to find the friction slope for a case where the ice extends over part of the
width (1 — )B, assuming the channel to be a wide rectangular such that p, = UB, A, = UA, etc. Applying
Manning’s formula to the entire channel section and the ice-covered and open portions, respectively, and
assuming the ice cover to be relatively thin in comparison to the flow depth, yields

23¢1R
Q= A_R_Sfl___ (19)
ne
0. =14 ““‘) spr=MAD 5y 20)
nc \2uB n2*3p3
1 1 i
gy = (1N [(l—u)AJ spn=UIAR g2 2n
o [(1-p)B nyB
The continuity condition gives
Q = Qa + QB . (22)
Substituting Qq, O, Pa» PB» Aq and Ay into eq 11 yields the following:
_B"n20? (1+F)*3 (23)

A u+(1-p)(1+ FPPR’

Equation 23 can be used to obtain S, and S¢4 of eq 10 by applying Sg = S, when u = p,, and Sy = S¢q when
= Ug4. A general expression for the average friction slope S can now be expressed as




: _0’ | (1-aA)erf® A1 +F)P \
T AR o
A [P'u"'(l'“u)(l*'F)z } [l.ld +(1—]J.d)(] +F)2fj] ’

The resistance term (p;T; + p,Tp) in €q 2 can now be determined by using eq 8. If the ice cover extends over the
entire width in the downstream reach as a result of progression, yg = 1. If there is no border ice, y, =0, and eq
24 reducestoeq 17.

(24)

Nodal equations
The equation governing the flow continuity at node k can be expressed as

out

in
300 ra=2 00 (25)
i=1 y=

where Q = discharge
i = incoming reaches
J = outgoing reaches
u and 4 = subscripts denoting upstream and downstream ends of each reach
gx = external flow at node & .

The energy balance for the node & can be expressed using the following equations:
Hg.l =H{|),i + AH; fori=2, in+ out 26)

where H = water level
(in + our) = total number of incoming and outgoing reaches for the node
AH; = head loss between reaches 1 and i due to control structures at the node.

The variable AH; is a function of Qg ;, Hy ; and H,, ) etc. There are a total of (in + our — 1) such equations
at each internal node.

External boundary conditions

Three types of boundary conditions are common in practice. They are the discharge, the water level and the
control structure type. In the case of a control structure, a functional relationship between the discharge and the
water level is necessary. Only one time history or stage—discharge relationship is required at each boundary.
Special treatment may be needed when a downstream control structure is not available in a long river. In such
a case the downstream boundary can be treated by satisfying the uniform flow condition at the downstream
boundary as presented by Viessman et al. (1972). An alternative method is to use an approximate rating curve
developed from the channel characteristics as suggested by Gunaratnam and Perkins (1970). In the case of a
boundary node connected to a reservoir having a known inflow and plan area, the continuity condition for the
reservoir can be used as the boundary condition (Potok and Quinn 1979).

The general functional form of an upstream and a downstream boundary conditions can be expressed as

Fu (Hue up) =0 (v4))
and
Fq (HE, 0f)=0 (28)

where F, and F 4 represent known functions. When the head is known at the upstream boundary,
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Fu (Hu,: Qup) = HS_] - Hub (29)
where H\;;, is the known head at the upstream boundary. When the discharge is known,
Fu (HE, 0F) =00, - Ouw (30)

where Q, is the known discharge at the upstream boundary. Similar expressions can be obtained for the
downstream boundary. When the rating curve @ = f{H) is used, then for the downstream boundary,

Fq (HE, Q0)=0f-f(HP)=0. . 31

Initial condition

If the initial conditions of the problem are known, the simulation can start with known initial values given
in the input. Otherwise, the steady state solution is commonly used as the initial condition. To obtain a steady
state solution, the program can be made to run starting from assumed flow and depth conditions close to those
existing in the field. A sufficient number of iterations have to be used to bring the solution to the steady state.

Fread (1985) suggested the use of a backwater computation to determine H and Q values. In this study the
method suggested by Potok and Quinn (1979) is used. The initial water surface profile and discharge distri-
butions are obtained by first setting a zero discharge and an assumed constant water level for the entire study
reach. The boundary conditions are then changed to those corresponding to the first time step. The flow simu-
lation is then run until the river profile becomes steady. The resulting profile is then used as the initial condition.

Method of solution

In eq 3 and 4, the unknowns are QP, O H? and H for each branch. For a river system with NR branches,
NB nodes (including boundary nodes) and NBND boundary conditions, 4NR equations are needed to solve the
4NR unknowns. A breakdown of the number of equations is given in Table 1.

Table 1. Number of equations available in the system of equations.

Type Number of equations

River reach continuity condition NR (number of reaches)
River reach momentum condition  NR (number of reaches)

Nodal continuity condition NB-NBND (1otal no. of nodes—no. of boundary nodes)
Nodal energy condition sum of (in—out-1) at NB-NBND nodes
Boundary conditions NBND (no. of boundary nodes)

The finite-difference form of the Saint Venant equations, along with the nodal and boundary conditions, form
a system of nonlinear equations of the form

F(x)=0 (32)
where x = (x}, x3, . . . xp) is the vector containing the unknown variables QP and HP, and f}, f5, . . . f, are the
coordinate functions of F. Using Newton’s method, the iterative procedure to find x at the time step k is given
as (Burden and Faires 1985)

J k=D [xlk) — xk=1)] = —F (x)(k-1) (33)
where J(x) is the Jacobian matrix. For computational efficiency, x is solved as a system of linear equations. The

(i /) element of the Jacobian matrix can be written as
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Table 2. Arrangement of a Jacobian matrix and the right side of eq 30 for the case shown in Figure 2.

— Reachl Reach 2 Reach3(NR)
Equation H, Q H; Q H, Q Hy Qg H, Q, H; Qg RHS
Upstream boundary A B 0 0 0 0 0 0 0 0 0 0 C
Continuity: reach 1 X X X X 0 0 0 0 0 0 o 0 X
Momentum: reach 1 X X X X 0 0 0 0 0 0 0 0 X
Continuity: node 2 0 0 0 X X 0 0 0 0 0 0 0 X
Energy: node 2 0 0 X 0 X 0 0 0 0 0 0 0 X
Continuity: reach 2 0 0 0 0 X X X X 0 0 0 0 X
Momentum; reach 2 0 0 0 0 X X X X 0 0 0 0 X
Continuity: node 3 0 o0 0 0 0 0 0 X 0 X 0 0 X
Energy: node 3 0 0 0 0 0 0 X 0 X 0 0 0 X
Continuity: reach 3 0 0 0 0 0 0 0 0 X X X X X
Momentum: reach 3 0 0 0 0 0 0 0 0 X X X X X
Downstream boundary 0 0 0 0 0 0 [ 0 Q 0 D E F
(Jacobian matrix, 12*12) (RHS. 12*])

Key: X = Variables taken care of by the program.
A,B,C.D.EF = Variables defined by user in subroutines UPBOUND and DNBOUND to take care of boundary condi-

tions.
Jijx) = %) (34)
Bx j

At each computational time step, the above iterative procedure is followed to obtain the unknowns x, which are
the H and Q values of the riverreaches. The selection of initial values x0is explainedlater. An alternative method
for solving a system of nonlinear equations is available when the analytical expression of J(x) cannot be
obtained easily (Broyden 1965).

By selecting a suitable numbering system for nodes and reaches, the bandwidth of the Jacobian matrix can
be reduced to a minimum. This is a very useful technique to reduce computing time and obtain accurate results
(Potok 1978). In the method used, nodes have to be numbered along the river from the upstream end of the river
to the downstream end of the downstream boundary reach. By doing this, external boundary conditions would
notcome into the center of the Jacobian matrix. Also, the difference between twoneighboring reaches and nodes
has to remain at a minimum, which is a condition for minimum bandwidth. Reach numbers should follow node
numbers. It is preferable to have the reach number be the same as the node number at the upstream end of the
reach. This condition is not possible in the case of river networks. Table 2 shows an example of a numbering
system for a river divided into three reaches.

Calibration of resistance coefficients

A river system consisting of many river reaches can be considered as a discrete system, and the Manning
coefficient of each section can be calibrated using influence coefficient methods (Beck and Amold 1977, Lal
and Shen 1990b). Since influence coefficients can be obtained numerically, the calibration methods do not re-
quire any manipulation of the governing equations. The numerical model for simulating the unsteady flow can
be used without further modification. Observed and simulated values of any number of state variables (water
levels) can be used to calibrate a number of parameters equal to the number of state variables.

The calibration uses observations of the state variable Y i, foreachof i= 1, 2, .. . nsensors (water level gauges)
attimestepsk=1,2,...m. The data are used to calibrate the parameters, 8;, /= 1, 2, . .. n(Manning’s roughness
coefficients). Three influence coefficient methods, depending on the selection of the objective function, can be
used. These methods are the least-square method, the minimax method and the minimum bias method. The
objective function used when applying the principle of least squares is the minimization of the error sum of
squares S over all the sensors and all the time steps. The expression for S is

n m

S=zl;k2(v{<—r.")2 35)

=]
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where y/ is the simulated value of the i*# state variable at time k. The objective function of the minimax method
is to minimize the sum of maximum errors in the simulation:

mine;+e,+...+e, (36)

where e, e, . . . e, are the maximum errors at gauges 1, 2, . . . n. The objective function of the minimum bias
method is to minimize the absolute value of the overall bias of simulated values at all the gauging stations. The
overall bias at any gauge i is given by

B=3 kv 37
k=1

The objective is to minimize lBi |foreachi=1,2,...n.This objective is achieved by making each element zero.
The current study uses the minimum bias method to obtain values of Manning’s coefficients, since the method
is more efficient and gives accurate results.

WATER TEMPERATURE AND ICE CONCENTRATION DISTRIBUTIONS

Governing equations

In a well-mixed river, distributions of water temperature and depth-averaged frazil concentration along the
river can be described by the one-dimensional advection—diffusion equation (Fischeretal. 1979). The equation
for the cross-section-averaged water temperature T, of a river is

aa—t(pcpATw) + ;’—z (@pC,Tu) = % (AExpcp %) - Bor (38)
where A = cross-sectional area of the river
B = river width
Q = discharge
p = density of water
C,, = specific heat of water
E, = longitudinal dispersion coefficient
¢ = total heat loss rate per unit surface area of the river.

Two boundary conditions and an initial condition are needed to solve this equation.
Ifthe river does not have large temperature gradients in the longitudinal direction, the longitudinal dispersion
term

p) oT )
L AE W
ox xpCp ox

can be neglected. An analysis of the water temperature data in the upper St. Lawrence River shows that typical
values of dT /0, dT,/ox and 92T,,/dx2 are on the orders of 10-6, 10-5 and 10-3, respectively. Without the
dispersion term, the solution procedure simplifies. When flow is unidirectional, only one boundary condition
is needed at the upstream end:

I,0,0=Ty(» 39
where T (¢) is the time history of the watertemperature at the upstream boundary. If the initial condition T, (x,0)
is not available, a steady state solution can be used as in the case of the hydraulics computation.

Whenthe water temperature drops below the freezing point, frazil ice will be produced. The one-dimensional
equation governing the transport of frazil ice is (Shen and Chiang 1984)
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9 (pLac)+ 2 (QpLiC) =1(A5xp¢i i) _por+ 55 (40)
ot ox ox ox

where C; = ice concentration
L; = latent heat of fusion of water
p; = density of ice
B = width of the river

%S§ = additional source or sink terms due to ice cover progression, erosion, deposition and melting.

The total heat flux term ¢ may be approximated by the surface heat flux ¢*. Since eq 40 is in the same form
as eq 38, both the ice concentration and the water temperature can be obtained from the solution of a single
equation by considering that C;p;L; = -pC T, and letting the water temperature in the heat exchange term ¢
in eq 40 be equal to the freezing point of water (Shen and Chiang 1984).

Heat exchanges

During open water conditions the total heat flux at the free surface is equal to the sum of the net short- and
long-wave radiations, the sensible heat exchange and the heat transfers due to evaporation and precipitation.
Some of these components, especially the long-wave radiation, are nonlinear functions of air and water tempera-
tures. In this model, linear relationships using constant heat exchange coefficients are used to express the net
heatexchange. These relationships can be obtained using multiple linear regression of computed heat exchange
and weather parameters (Lal and Shen 1990a).

The net heat exchange rate at the water surface can be approximated by the following linear relationship
(Ashton 1986)

O* = hya Ty —T)) (41)
where¢* = net rate of heat loss from the water surface
T, = air temperature
T,, = water temperature
hy, = heat exchange coefficient.

Since the short-wave radiation is independent of the water temperature T, and the air temperature T, and
varies with latitude and cloud cover, a modified form of eq 41 may be used (Dingman and Assur 1969):

¢*=—Op+a +P (Ty,-Ty 42)

where o and B are heat exchange parameters and ¢p, is the short-wave radiation, which has to be computed
separately making use of the latitude and cloud cover. Linear models cannot completely describe the heat
exchange process. However, for rivers where extensive weather data are not available, linear models provide
a sufficiently accurate alternative for computing the surface heat exchange.

When there is an ice cover in the river, the turbulent heat exchange taking place between water and the
underside of the ice cover ¢,,; may be represented by

¢wi = hwi (Tw - Tm) (43)

where h,; s the turbulent heat exchange coefficient between ice and water in W m~2 °C-1. Considering the ice-
coveredriveras aclosed conduit, the following relationship can be used to explain the heat exchange coefficient
(Ashton 1973):

0.8
hwi = Cwi u_ (44)

£.2
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where U = average flow velocity (m s-1)
d,, = depth of flow (m)
Cyi = constant = 1622 W 50.8 m—2.6 °C-1,

Laboratory and field investigations indicate that the coefficient C,,; may vary with the resistance of the cover
(Haynes and Ashton 1979, Calkins 1984, Marsh and Prowse 1987).

Inriverreaches where the heat exchange at the river bed and the heat flux from thermal effluents may be sig-
nificant, these terms have to be considered in the source term. For most rivers the bed heat flux can either be
neglected or lumped into the surface heat exchange in the thermal analysis.

Numerical solution

Many numerical methods have been introduced to solve the transport equations. Most of these methods are
based on Eulerian schemes. The method suggested by Leendertse (Cunge et al. 1980) is capable of reducing
artificial diffusion but introducing artificial dispersion. It produces oscillatory behavior in the solution. Holly
and Preissman (1977) introduced a method aimed at reducing both numerical diffusion and dispersion but at
the expense of computational efficiency.

The difficulties in using Eulerian schemes to model convection without causing instabilities, inaccuracies
and oscillations led to the use of Lagrangian or Eulerian—Lagrangian schemes (Fischeretal. 1979, Jobson 1987).
The Lagrangian scheme uses marked parcels of water moving along the channel at the flow velocity. Lagrangian
schemes are stable at any Courant number, and if there is no need for the values of the concentration in the
moving parcel to be interpolated to the Eulerian grid, numerical diffusion is virtually nonexistent.

In the present model a Lagrangian—Eulerian scheme is developed to solve the transport equation. The
following Lagrangian equation can be obtained from eq 38 or 40 using the continuity equation and neglecting
the dispersion term:

DT, ___0 45)

Di pCd,’

In the computation, marked parcels of water with known water temperature or ice concentration are released
from the upstream boundary and nodal points at each time step. The parcels are followed along the river with
known flow velocities from the hydraulic computation. The temperature or concentration values of each mov-
ing parcel can be determined at any time during the movement. When the parcel velocities are numerically
integrated over the time step Ar, the new position of a parcel originally located at the i node with distance x;
from node 1 can be obtained:

J-1 J-1

Si=xi+2_Axk+ u; At..Zé;xL (46)
k=i k=i Yk
where At = time increment
Axy = length of the k" reach
§; = distance to the particle from node 1 at the end of the time step
x; = distance to node i from node 1
J— 1 = number of the last reach completely passed by the moving parcel before the time step is complete

uy = average flow velocity in reach k at time
i, j, k = dummy integer variables.

The movement and positions of parcels can be illustrated by an x—r plot as shown in Figure 7. In the figure, ér;
= Ax;/u; within any reach .. A parcel a; at node 1 will go through by, ¢; and end up at d; at time *+!. Similarly
parcels starting at @y, a3, . .. move during the time step Ar along the paths shown.

The temperature of the i* parcel at time #+! can be obtained by integrating eq 45 over time:
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Figure 7. Lagrangian—Eulerian scheme.
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where T3 = T, atnode i at time #+1

(n+1)
w,i

dwk
ok

= T, of a Lagrangian parcel i at time #+!
mean depth of the reach k
heat loss rate in reach k.

For large values of At, the above procedure cannot determine the water temperature distribution in the vicin-
ity of the upstream boundary, e.g. at nodes 2 and 3 in Figure 7. The values at these nodes can be determined by
backtracking moving parcels to the upstream boundary. Forexample, parcels that arrive at nodes 2 and 3 at time
tn+! are originated at ¢, "and a,". The positions of a” and a” can be determined by drawing al'b; and a’l’b’l’ parallel
toa,b,,and bic, parallel toab,. The values of the water temperature or ice concentration at the boundary node
atany time can be determined by linearly interpolating between values at the time levels /7 and m+!. Using this
procedure, temperatures at the nodes near the upstream boundary can be determined using the following
expression:

-1 | i-1 -1
T = ot ( ~A-"—k)+ Tul (At - -A-’i&)- O Av (48)
’ Ar i M At k=1 U ] g pCpdyk Uk

Equation 47 does not give the values of temperature or concentration directly at the fixed Eulerian nodes.
Forthe convenience of bookkeeping, the information carried by Lagrangian parcels are interpolated to the fixed
Eulerian nodal points atthe end of each Artime step. These interpolated nodal values are then used as the starting
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Figure 8. Definition sketch for the analysis of numerical diffusion.

points for the Lagrangian computation in the next time step. The nodal temperature values are interpolated from
the closest moving parcels upstream and downstream of each node, using the following approximation:

(n+1) (n+1)
Ty = Te 4 * Twger & 49
dp + 4

where d,and d, are the distances from the fixed node to moving parcels. In the case of ice transport, the additional
sink and source terms in eq 40 should be considered. These terms are due to the consumptions of the ice in the
initial ice cover formation and frazil deposition and the addition of ice into the stream due to the ice cover failure
and the erosion of frazil accumulations. Modeling of these phenomena will be discussed later.

Numerical diffusion is introduced when interpolating temperature or frazil concentration from the moving
parcels to the Eulerian grid system. Numerical diffusion can be minimized either by using higher-order inter-
polation schemes (e.g. Cheng et al. 1984, Holly and Usseglio-Polatera 1984) or by simply introducing more
Lagrangian parcels where the concentration gradient is large. Since gradients of water temperature or ice
concentration distribution in natural rivers are small, linear interpolation is used for numerical efficiency.

A single moving parcel P of unit mass moving in a uniformly spaced grid system is used to examine the
magnitude of artificial diffusion. As shown in Figure 8, a concentration slug of triangular spatial distribution
P, PP, attime " will move to Q;QQ, at time ¢*+1. Based on the linear interpolation formula, eq 49, the concen-
tration distribution at the Eulerian grid system after interpolation becomes R RSS). The concentration distri-
bution can be replaced by the linear superposition of two triangles R{RS” and R’SS,.

For these two triangles the condition for the conservation of mass gives

C1Ax + 3 Ax = cAx. (50)
The conservation of the first moment around R—R (or any other point) gives
cAx Axg, = cpAx2. én

Equations 50 and 51 give
_Ax-Ax, ¢

€
Ax

(52)

and
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ey=Sm (53)
Ax

This indicates that the interpolation procedure satisfies both the conservation of mass and the conservation of
first moment. The total mass of the dispersant is cAx = 1. The variance of the mass concentration 62 is given
as (Fischer et al. 1979)

o’ =[ (x-)c dx. (54)
For the original triangular concentration distribution centered at P at time ",
o2=1 Ax2 (35)
6

Substituting eq 52 and 53 into eq 50 gives 62 for the concentration around the axis 0—Q’ due to the two triangles
atRand S:

ol= é— Ax3c) + AxAx3c) + -é— Ax3cy + Ax(Ax - Axm)zcz. (56)
The change of 62 during the period * to 7+ is determined from eq 55 and 56, while noting that cAv = 1:
A0? = Avy, (Ax ~ Axy). (57)

If the parcel has passed j grid points during time Ar to come to 0, the Courant number is given by

C,=UAL=
Ax Ax

At
=j+ M 58
J . (58)

Using the value of Ax,/Ax obtained from eq 58 in eq 57, the numerical diffusion K, is computed as

2
K.=L1do” _ 1A (c_\(i+1-C (59)
n 2 dr 2 At(rj)(l r)
_1 Axm(Ax—Axm) (60)
2 At
~0 A_\_) 61)
At

where C is the Courant number (UA#/Ax) and j is the largest integer smaller than the Courant number (zero
included).

The following observations, which are useful in selecting time steps and grid spacing, can be made about
numerical diffusion K:

* K, is zero for integer values of C;

* K, is at its maximum when C, = n + 0.5 where n is zero or a positive integer;

* K, averages to 0.083 (Ax2/Ar) for random values of C;

* K, is proportional to Ax2; K, can be reduced by dividing the river into more sections;

* K, can be reduced by increasing the time step Az,
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Figure 9. Effect of the Courant number on numerical diffusion.

The effect of the Courant number on nun;erical diffusion is illustrated in Figure 9. The parameters used are
as follows:

Space discretization, Ax 5,000 m
Velocity, u 0.1ms-!
Cross-sectional area, A 10,000 m?
Width, B 2,000 m
Time step length, Ar (C, = 1.0) 50,000 s
Time step length, At (C. =0.5) 25,000 s
Time step length, Ar (C, = 1.5) 75,000 s.

An imaginary dispersant with a rectangular concentration distribution is used, and simulations are carried
out with the Lagrangian schemes using Courant numbers of 1.0, 0.5 and 1.5. Figure 9 shows the concentration
distribution plotted at 0.0; 300,000; 600,000; 900,000 and 1,200,000 s. The curve for C, = 1 shows no numerical
diffusion. C,=0.5 gives the maximum numerical diffusion for this problem. The curve for C,= 1.5 shows that
numerical diffusion is reduced by taking a larger time step. Values Ax and Ar can be selected for a numerical
scheme such that numerical diffusion would not become excessive. Numerical diffusion can be made approxi-
mately equal to the physical dispersion coefficient to reduce its effect.

The numerical procedure for simulating the water temperature distribution was verified by comparing the
numerical solution with a steady-state analytical solution. The steady-state solution for eq 38 with constant
values of A, B and u, neglecting dispersion and unsteady terms, is

T, =(To-T,) exp(-kx) + T, (62)

where k =(h,,,B)/(pCruA) and T, is the temperature at the upstream boundary at.x=0. Analytical and numerical
solutions for C; = 4.32 are shown in Figure 10. Values of the parameters used are given below:

Time step length, Ar 216,000 s
Space discretization, Ax 5,000 m
Velocity, u 0.1 ms-!
Cross-sectional area, A 10,000 m2
Width, B 2,000 m

Heat exchange coefficient , A, 200 Wm-2°C

Specific heat of water, C,
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Figure 10. Comparison of the numerical and analytical solutions.

The error shown in Figure 10 is due to the linear interpolation of values between nodes and the e1. rinthe
finite-difference discretization. In this example, where numerical diffusion is not important, a larger time step
Ot = Ax/u as chosen to show that although numerical diffusion can be reduced by taking larger values of Ar, the
discretization error, which is on the order of t, increases to give a larger deviation between the observed and
simulated results. This error can be reduced by reducing 8¢ in the simulation.

Stratification effect

Temperature and density stratification is common in lakes located in temperate regions. This stratification
can persist for some distance if the flow velocity is too low forrapid mixing. Inthe case of the upper St. Lawrence
River, as the water comes out of Lake Ontario, the temperature remains between 0° and 4°C. In the upstream
portion of the river, the flow velocity is low, and the river stratifies due to lack of mixing and intense surface
heat loss. This stratification makes the one-dimensional assumption invalid. Modeling stratification requires
two-dimensional models. Verifying and applying such a model require observed temperature variations with
depth. When temperature observations over the depth are not available and the effects of temperature strati-
fication have to be considered in a one-dimensional model, a simplified two-layer formulation may be used.

Lagrangian formulation for stratified flow
The governing equation for the vertical distribution of water temperature in a river with weak density
stratification can be expressed as

 Tw (63)

aT. aT ﬂ=isarw)+_a_gﬂ+¢_v

X u—¥4y y
o ax d oJx & dy oy pCp

where T, = water temperature
p = density of water
C, = specific heat of water
€, € = turbulent mixing coefficients in x and y directions
¢, = time rate of absorption of energy from short-wave radiation per unit volume of water.

The short-waveradiation ¢, decays exponentially from the top surface withincrease indepth (Tennessee Valley
Authority 1972).
For flows with small longitudinal temperature gradients and low vertical velocities, eq 63 reduces to
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Figure 11. Definition sketch for the formulation of stratified flow.

My yTu_ 9 [¢ Mu), Oy (64)

aa y\Tal e

By dividing the river water into a colder upper layer and a warmer lower layer as shown in Figure 11, a two-
layer formulation can be developed. Integrating eq 64 over the assumed upper layer from level y=y toy =
ys yields

Oys, 7 Mus L[g P, o (65)
ot ox d |7 ay yzy,  PCpd
where
— Ys
Tws =1 J Ty dy (66)
Ym
&=y s Ym (67)

and d is the river depth y.—y, and ¢, is the total rate of absorption of short-wave radiation by the surface layer.
At the top boundary the heat exchange with the atmosphere, as given by eq 42, is

e, Moy = s (68)
dy pC,
where ¢ is the total heat loss at the top surface of water excluding the absorption of shor -+ e radiation within
the depth. Heat exchange at y = y, can be expressed using a simple relationship
T & (¥ =
Gex = Sy —_— l)‘=y"‘ = (Tws- wa) (69)
dy 8dpC,

where g., = rate of heat exchange at the interface y = yp,
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Twp = average temperature of the lower layer
g€ = average turbulent mixing coefficient across the mixing zone
dd = thickness of the mixing zone between two layers.

Substituting eq 69 into eq 63 yields

aFws +u ai’_ws = _ Os - S'L(Tws - T‘"b) + s (70)
ot ox pCp 0ty d 8d pC, pCp d

where a, = dy/d. In Lagrangian form, this reduces to

was =_ —0s+0ys _ E;’(TWS - T“’b) n
Dr pCp Omd 3d pC,
Assuming all the short-wave radiation is absorbed in the upper layer, the following relationship is derived
using eq 41:
was - _ hwa (Tws - Ta) + Ey (wa - Twsl) 12)
Dt O PCpd pCpd
where Ey = 8;,/8. Similarly the following equation is obtained for the bottom layer:
wab _ Ey(Tws - wa) (73)

Dt pC,

Equations 72 and 73 are depth-averaged equations for water temperatures in the upper and lower layers,
respectively. The parameters Ey and 0, have to be determined before these equations can be solved. In the case
of the St. Lawrence River, only one observati_on, Tys, is available, and hence only one parameter can be cali-
brated. E, is calibrated by further assuming Ty, = 4°C and o= 0.5.

An alternate method of modeling the average water temperature using only one calibration constant is to
lump the parameters of eq 72 as

Dlys__ 1 [hy E) To-1)-5(r 7). 74)
Dt pcp(’(;;‘a‘;"' y (ws a) pCp( a wb) (

Assuming Typ, 0y, d2nd E tobe constants, eq 74 can be written using two unknown parameters, 0., and f,,:

was = Bwa (fws - Ta)
Dt pCpd

+ Oy (75)

When there are no data available for evaluating a.,,, and f,,. eq 75 needs to be simplified:

wa - Bw(Tws ~T,) . (76)
Dt pCpd

The parameters a.,,, By, and B, are unknown. To model T, using eq 76, B has to be calibrated. Equation
76 is similar to eq 45 and 41 except that the heat exchange coefficient is modified for the stratification effect.
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Relatively large values of f},, observed in the upper St. Lawrence River can be expected due to stratification.
From eq 74, it can be seen that larger values of i, can be attributed to oty < 1.0 and E > 0. Since B, varies
with T, eq 72 is used in the present model instead of eq 76.

Calibration of heat exchange coefficient

Calibration of E,, for a river reach is carried out based on a least-square error criterion. It is possible to
minimize the sum of square errors by using an iterative scheme (Beck and Arnold 1977). Assume an initial guess
value of Ey for E, and let T, #; be the n pairs of observed and simulated temperatures at the downstream ends
of the reach. The predicted value for E in the next iteration is

T 1 (t‘ - T') ai
y = £Ey0
h 2 a%

where g; is obtained numerically by simulating #; using two close but different values of E,:

_ ti(Ey + AEy) - 5 (Ey) -

kil
oE, AE,

(78)

q:

The difference used was AE, =0. OlE . Twoto three iterations are usually sufficient to obtain a minimum value
forZ7_ (1 - )2 The period of data used for calibration is 21 December 1979 to 16 January 1980. This period
is se]ected because the river is ice free and the water temperature is below 4°C. When the water temperature
is above 4°C, warm water stays in the upper layer relative to colder water. Calibration is first done for reaches
14, using known water temperature record at Kingston, to minimize the sum-of-square errors at node 5. Using
these values of E, calibration is then continued for reaches 5-22, using the same upstream end water tempera-
ture at 1, to minimize errors at node 23. Stratification with o, = 0.5 was assumed only up toreach 11, because
the downstream reaches are well mixed. The same procedure is continued over the entire river. Calibrated E,
values are given in Table 3. The value of ,,, = 19.71 W m~2 °C-1 used in the model was obtained from linear
regression of the computed heat exchange for the St. Lawrence River with weather data (Lal and Shen 1990b).

The constants o, and B, in eq 75 or B, in eq 76 can be calibrated using regression or any other method
if data are available. Since B, changes with air temperature, its value has to be determined for different
temperature ranges for better results. Table 4 shows the values of B, obtained for the St. Lawrence River using

Table 3. Calibrated heatexchange coefficient Ey for the St. Lawrence

River.
Location E, o, by
Reaches  Starting Ending (Wn2 °C-1) (Wm2) (Wm2 )
1-4  Kingston Clayton 43.46 0.5 19.71
5-11 Clayton Waddington 6.00 0.5 19.71
12-22  Waddington Ogdensburg 0.00 1.0 19.71
23-32  Waddington Massena 0.00 1.0 19.71

Table 4. Modified heat exchange coeffi-
cients for the St. Lawrence River.

Location
Reaches _ Starting Ending  (Wm2C-1)
1-4  Kingston Clayton 29.80
5~22  Clayton Waddington 30.84

23-32  Waddington Ogdensburg 19.00
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the least-squares method givenby eq 77 and 78. The heat exchange coefficient in the well-mixed reach between
Waddington and Massena in Table 3 agrees well with that in Table 4.

ICE COVER FORMATION

Ice covers form on rivers when the water surface cools to 0°C and the heat loss over the surface continues.
There are two types of ice cover formations: static ice cover formation and dynamic ice cover formation. The
static formation of ice covers occurs in lakes and slow-flowing regions of rivers. In this case, ice crystals form
in the supercooled surface layer and remain on'the surface to form a stationary or moving skim ice cover. The
formation, growth and decay of this type of ice covers are dominated by thermal effects rather than mechanical
effects (Matousek 1984b). Since it can affect the frazil ice production by reducing the open water area, it is
important to consider the skim ice formation in a river ice model.

Dynamic ice cover formation is dominated by the interaction of surface ice particles with each other under
the influence of hydraulics and wind conditions. This type of ice cover forms due to the accumulation of the
surface ice discharge. The surface ice discharge consisting of slushice and ice floes is developed from the frazil
ice that is suspended throughout the depth of the flow. Once an ice cover accumulates, surface heat loss can
freeze the voids and lead to a rapid increase in strength. Dynamic ice cover formation can take place inthe form
of particle juxtaposition, hydraulic thickening or mechanical thickening (Pariset and Hausser 1961). Unlike the
static case, dynamic formation needs an existing leading edge or an obstacle on the water surface to impede the
ice movement. The thickness of the initial ice cover is governed by channel geometry, hydraulic conditions and
ice properties. Formulations used to model ice cover formation are discussed in this section.

Static ice cover formation

In addition to the weather conditions the formation of skim ice is related to the turbulentintensity of the flow,
which affects both the degree of supercooling of the surface water temperature in relation tothe depth-averaged
water temperature and the entrainment of the frazil ice crystals. Current understanding of static ice formation
is limited. According to field observations in River Ohre, Czechoslovakia, Matousek (1984b) obtained the
following empirical relationship:

T =Towm— @ 19
WS Y 1300 + bW 79

where b = 150 when B<15.0m
b =-09+5.87InBwhenB>150m
¢ = rate of heat loss from the water surface to the atmosphere (W m-2)
T, s = temperature of the water surface (°C)

T,, = depth-averaged water temperature
u = local depth-averaged flow velocity (m s-1)
W = wind velocity at an elevation of 2.0 m above the water surface
B = surface width in the wind direction (m).

The value of T, ; obtained from eq 79 is used to decide the mode of skim ice formation on the surface during
the beginning of freeze-up. According to Matousek (1984b), the following criteria may be used:

* When T, ; 2 0°C, no ice phenomena will occur.

* When T, > 0°C, a skim ice run will occur if T, < T, s <0°C and v, > v,. The skim ice run will change to

a frazil ice runif vy > v,

« When 7, > 0°C, a static skim ice cover will form if T, ; < 7.

» When T, < 0°C, a frazil ice run will occur, which will lead to dynamic cover formation.

In the above discussion vy is the buoyancy velocity of frazil ice (m s-1), v is the vertical component of the
turbulent fluctuation velocity and T, is the supercooled surface temperature below which static skim ice will
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form. The value of T, is site dependent. Matousek obtained a value of —1.1°C for River Ohre. In the current
model, T, = -0.5°C was found to describe the skim ice formation in the upper St. Lawrence River. This
discrepancy may be partly caused by the use of one-dimensional velocity in eq 79.

The above formulation reflects the effect of turbulent intensity on the river ice formation process. The
stability of frazil ice crystals formed in the supercooled surface layer is governed by the relative magnitudes
of the vertical component of the turbulent fluctuation v and the buoyant velocity of ice crystals vi, (Matousek
1984b). When v,’> vy, ice crystals formed in the surface layer are entrained into the depth of the flow. If T,
> 0°C, ice crystals melt into the flowing water. If T, < 0°C, ice crystals grow and will be transported as frazil
suspension. The equations developed by Ramseier (1970) and Zacharov et al. (1972) are used to obtain an
expression for v, (Matousek 1984b):

vp = —0.025T,, 5 + 0.005. (80)

M-tousek (1984b) used the equation developed by Makaveyev to obtain v'z (Karaushev 1969):

[ —Vg.__u (8])
5Y(0.7C +6)C)

where u = depth-averaged velocity of the water flow (m s-})
v, = vertical fluctuating component of water velocity (m s-1)
C = Chezy’s coefficient (m0-5 s-1)
g = gravitational acceleration (m s-2).

Y

Equation 81 is valid for 10 < C < 60. Figure 12 illustrates freeze-up and ice run types obtained for a given set
of T, b and W values by Matousek. For lack of a better analytical formulation, Matousek’s empirical formula-
tion is used in the present model to determine skim and static shore ice formation. Equation 81 does not include
the effect of wind on the turbulent fluctuation velocity. It gives a very low value for the turbulence fluctuation
velocity onthe water surface. Following is a simple derivation for turbulent velocity, similartothe one presented
in Fischer et al. (1979) for vertical mixing under the influence of wind. In this method the resultant turbulent
velocity fluctuation due to both wind and bed shears is obtained by assuming that the input powers of both effects
can be added linearly.

To find the turbulent fluctuation velocity due to wind, the rate of work done by wind on the water surface
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Figure 12. Relationship between ice run types, freeze-up mode and §, u and C at
T, =0,b=27and W = 0.5 ms-! (Matousek 1984).
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To find the turbulent fluctuation velocity due to wind, the rate of work done by wind on the water surface
Pis

P =1,u, (82)
where u,, is the velocity of water near the surface and 1, is the shear stress of wind. Then,

T = CppW2 (83)

where W

Pa
Cp

wind velocity (m s~1) at 10 m above the water surface
density of air (1.22 x 103 kg m-3)
drag coefficient.

Cp=1.3 x 103 is used with wind velocities measured 10 m above the water surface. The shear velocity due to
wind wx can be obtained by using

Tw = pw,? (84)
where p is the density of water. After combining with eq 83, it gives

we= |CpPaw 2|2 (85)
p

Assuming u,, is of the same order of magnitude as w«, and using 1., of eq 84 in eq 82,

The second source of turbulence at the river surface is due to the shear at the river bed. The turbulent
fluctuation velocity v’ at the channel surface due to bed shear has been related to the shear velocity u« by Rodi
(1980) using plots that give the ratio C«. This relationship can be expressed as

V2

2=C,... 87

Ux

Rodi’s experimental results show that the ratio C. lies between 0.2 and 0.3. An expression for u+ can be obtained
using the following equations:

w=L g P (88)
y

To = PERSe (89

To= pu..2 90)

where u = average flow velocity
n, = Manning’s roughness coefficient
R = hydraulic radius
S¢ = energy slope.

Equations 88-90 give

u, =g “—l"/bg o1
R
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Assuming that the input powers of bed shear and wind shear can be added, ameasure of the turbulent fluctuating
velocity g due to both effects can be obtained using

#= "3+ Cyow,d) (92)

where C\,« is a constant explaining the efficiency of wind energy utilization. C,«= 1 was selected in the current
study after considering different experimental observations (Fischer et al. 1979). Equations 87 and 91 are then
used to obtain v, when eq 85 is used to obtain w.. Equation 92 can now be expressed as

3 32
(,3:(6*‘%1/2__"") +cw.{cD£’3) w? 93)
RV6 p

where ¢ is an indicator of the magnitude of the turbulent fluctuation velocity. In the current study, g obtained
using eq 93 is used to replace the turbulent fluctuation velocity v, of eq 81. When the condition in a given reach
favors skim ice formation, the rate of growth across the width is assumed to be infinite. The maximum width
up to which skim ice can form is given as input data because it depends on the distribution of flow across the
width. A variable p is used to represent the fraction of width that can be covered by skim ice. In this section,
plausible empirical formulations are used for simulating static ice formations. Further studies are needed to
improve the formulation.

Dynamic border ice formation

In addition to the static thermal mode, dynamic border ice can form due to the accumulation of surface ice
along the shore or edges of existing border ice. This type of lateral growth is limited by the stability of surface
ice particles in contact with the existing edge of the border ice. The rate of growth of the width of the border
ice will also be governed by the surface concentration of the frazil ice run. The stability of the ice particles that
are in contact with the edge of existing border ice is governed by the drag force acting on the particle, the com-
ponent of the gravity force along the water surface, and forces from neighboring ice particles. These forces are
resisted by the friction or strength at the contact point. A theoretical model that is capable of describing the above
phenomenais yet to be developed. An empirical model has been proposed by Michel et al. (1980), and this study
uses that model.

Based onthe borderice development in the St. Anne River, Canada, Michel et al. (1980) obtained the follow-
ing empirical relationship for the rate of lateral growth of border ice:

R=14.1V%% N108 94)
where R = M
Ad
Ve = .
VC
u = depth-averaged flow velocity in the open water adjacent to edge of the existing borderice (m/s-1)
V. = maximum velocity at which a surface ice particle can adhere to the border ice
p = density of water
L; = latent heat of fusion of ice
AW = growth of border ice per unit time
A = heat exchange per unit area per unit time
N = u—?—% = aerial concentration of the surface ice
o= su'rface ice transport rate
t; = ice floe thickness
= width of the reach.
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According to Michel et al. (1980), only the static mode exists when N < 0.1, and eq 48 should be used with N
=0.1.

Michel et al. (1980} indicated that eq 94 is valid for 0.167 < V« < 1.0. When V.« < 0.167, static ice or skim
ice formation occurs; when V. < 1.0, only thermal growth occurs because frazil cannot adhere to the border ice.
The rate of thermal growth is negligible. In the present study, since the static ice formation is modeled using
the formulation given earlier, the lower limit is not used. For the St. Anne River, Michel et al. (1980) found that
the critical velocity V, is 1.2 m s~1. According to the preceding discussion, however, this value is governed by
gravity, drag and friction forces acting on the surface particle, and it will vary accordingly. For the upper St.
Lawrence River, the V value is about 0.4 m s-! for typical flow conditions (Shen and Van DeValk 1984).

Dynamic ice cover formation

When the ice run occurs, an ice cover may be formed due to the accumulation of surface ice on the river
surface. If conditions are favorable, this type of ice cover can extend upstream with the accumulation of surface
ice. In the present study, existing quasi-static ice jam theories (Pariset and Hausser 1961, Uzuner and Kennedy
1976) are used by taking into consideration the interaction between flow and ice conditions to determine the
rate of ice cover progression. The present model is capable of simulating ice cover formation by particie
juxtaposition, hydraulic thickening (commonly known as a narrow river jam) and mechanical thickening
(commonly known as a wide river jara).

Particle juxtaposition

In regions with a relatively low flow velocity, an ice cover can form by the juxtaposition of ice floes. For
anice cover to progress in this mode, a stability condition for incoming ice floes must be satisfied. The stability
of an ice floe when the leading edge thickness of the ice cover equals that of the ice floe can be determined by
an equilibrium analysis of an arriving ice floe.

Pariset and Hausser (1961) and Pariset et al. (1966) suggested that the critical stability criterion can be
expressed in terms of the Froude number of the flow:

F,c=v‘_;°ﬁ=l"(;—:)(l—;—;),\/2g(l—%)(l—e);-;— 95)

where F,. = Froude number of the river

V. = critical velocity upstream of leading edge for underturning and submergence
t; = thickness of the ice floe
H = upstream flow depth
h = H—fi
g = acceleration of gravity
F(r/I;) = form factor that varies between 0.66 and 1.30
I; = length of the ice floe.

Ashton (1974) pointed out that it is more appropriate to express the stability criterion in terms of the particle
Froude number. For ice floes with 0.1 < #,//;< 0.5, the following analytical expression derived by Ashton (1974)
compared well with laboratory data:

2(1-1’_;)

0T ot

where F[}. is the critical value of the particle Froude number. The effect of porosity in the ice particle is not
considered in this equation. Equations 95 and 96 are identical if

Fie=

(96)
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The term (1 — ¢) is introduced into eq 95 when the effect of porosity is considered.

Under the criteria given by eq 95 or 96, anice cover of one floe thickness will form by juxtaposition. Athigher
velocities, ice floes will accumulate into a cover of more than one floe thick. Equations 95 and 96 require ice
floe dimensions to determine the critical velocity. Since no reliable analytical method is available to determine
these dimensions, field observations or calibrated V or F, values are used in the present model. Most laboratory
data lie between Fy. = 0.08 and 0.13, while field data lie between F,, = 0.06 and 0.08 (Kivisild 1959, Ashton
1986). For an ice floe 6.0 thick and 10.0 ft in diameter and when F(t;/l;) = 1.2 with e = 0.5, V. is about 1.4 ft
s~1. For a flow depth of 30.0 ft, this is equivalent to F, = 0.055.

During the progression of an ice cover in a river reach, a simultaneous change in hydraulic conditions takes
place. To improve the accuracy of the numerical computation, this change must be considered so that areason-
ably large time step can be used in the simulation. The present model assumes that the local hydraulic conditions
can be approximated by a backwater profile over the discretized river reach or reaches where progression takes
place during the current time step.

Consider the case of ice cover progression by juxtaposition in the river reach shown in Figure 13. The ice
cover is assumed to have reached node 2 at time £, so that conditions at node 2 are known. Energy balance
between sections 1 and 2 gives

2 2 —
He 2 —H, + 2 +5Ax o7
2gA?2 2gAc2

where ST(' is the average friction slope over the reach. The subscript o denotes a variable at the downstream
section whose values are known. In a typical cross section of the river, the water level H and the net flow cross
area A are related by

A=A'+B(H—z—%ho) (98)
where h,, is the thickness of the ice cover, which is equal to the thickness of the ice floes #;. The friction slope

Sy is obtained using eq 17. Substituting eq 98 into eq 97, the following equation can be obtained:
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Fl(A)=A—A +z+ti&+—Q——Ho— 0
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_2802,2, [ BY |4, (A" Ao kB i\ g, (99)
1073 2 Bg

Since the thickness ¢ is known, the flow area A can be solved by the Newton—Raphson .nethod (Burden and
Faires 1985). In eq 99 it is assumed that the entire length of Ax of the reach will be covered.

When the solution A is known, H is determined using eq 98, and the water surface profile is updated locally
to take the effect of ice cover into account. If progression continues to the next reach upstream, eq 99 has to be
applied to that reach using the A and ¢ values just determined. The process continues until either the surface ice
supply for the time step is used up or the Froude number exceeds F.. It should be noted that A and H values
computed according to the above procedure are only the approximate values to be used to determine the ice
conditions during the current time step. These values will be replaced by the solutions of the St. Venant equa-
tions at the time level #+1 obtained from the hydraulic routine.

43
+ B l:l +
A%

Hydraulic thickening

Wien the Froude number is greater than F, the juxtaposition mode cannot exist. The ice cover will then
form in the hydraulic thickening mode. The accumulation process responsible for this mode of ice cover
formation is commonly known as narrow river jam formation. The equation for the narrow jam thickness was
derived by Pariset and Hausser (1961) using a simple non-submergence or “no spill” condition. With a modi-
fication proposed by Michel (1971), the equation for narrow jam thickness is

14 =[2 '1'70(1— ec)(l— %—]m(l— h

A ) (100)

o
H
where

ec=ep+(1 —ep)e (101)

and V = velocity upstream of the leading edge
hy, = equilibrium initial thickness of the ice cover
H = upstream flow depth
ep = porosity in the accumulation representing the space between ice floes = 0.4
e = porosity of an ice floe = 0.2
e. = overall porosity = 0.5.

Equation 100 gives amaximum critical Froude number for progression Fy at(hy/H)=(1/3) (Pariset and Hausser
1961):

V
Fo=—%5-=0.158 Y l—ei. (102)
Ve (i-e

Field observations (Kivisild 1959) indicated that Fy. varies between 0.05 and 0.1. Recent studies indicated that
this value is approximately equal t0 0.9 in the St. Lawrence River (Shen et al. 1984) and the Yellow River (Sun
and Shen 1988). Equation 100is used tocompute the initial ice coverthickness. In the hydraulic thickening case,
the interaction between the ice cover formation and the hydraulics is considered using a procedure similar to
that used earlier. This procedure is as follows.

For the convenience of formulation, eq 100 may be written as
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V—“=(l-—ec)(l—2‘-)ho (103)

2g p
or

FZ(A,ho)=Q2—2gA2(1—% hy=0 (104)
where A = net cross-sectional area of flow under the cover

hy = thickness of the initial ice cover

Vy = velocity under the ice cover

Q = V, A =river discharge.

In addition to eq 104, the energy equation (eq 99) for the flow is needed to solve for the unknowns A and A,,.
Eliminating h, from eq 104 and 99, with r, replaced by h,, a nonlinear equation in the form of F3 =0canbe
obtained:

r 2 , 2 2
F3(A)=A_A +z+ 0 B, o 0o~ 2
B 2071 %) P 2gA2 2845
_21/3Q2n2Ax B4/3 1+ A_ + B_g/3_ 1+ 1—4-9- =0. (105)
R N B2 AloB B?

This equation can be solved using the Newton—Raphson algorithm.

Once A is obtained from eq 105, the value of h, can then be obtained from eq 104. Progression will continue
to the next river reach upstream from cross section 2 if more surface ice supply is available. This solution
procedure should continue untii the ice supply is exhausted.

A study of the behavior of eq 99 and 104 indicates that there can be two roots of A and 4, in a given river
reach. This is similar to the solution of Pariset and Hausser (1961), which neglected the interaction between the
ice cover formation and the hydraulic condition. In addition, there exists a Froude number beyond which no root
for A or h,, exists. This Froude number corresponds to the critical Froude number for progression given by eq
162.

To obtain the correct root of A, an appropriate initial value of A has to be chosen in the Newton-Raphson
procedure. As pointed out by Pariset and Hausser (1961), the smaller positive root of h,, which occurs at a
Froude number less than F%, is the physically correct solution. Since smaller h,, values correspond to larger A
values, a larger initial trial value of A should be used in the Newton-Raphson procedure.

Mechanical thickening

In a wide or steep river the increase in streamwise forces acting on the ice cover may exceed the increase
in bank resistance. In this case the internal resistance of the ice accumulation may not be able to resist the
increasing stress as the cover extends upstream. If the stress inthe ice accumulation exceeds its internal strength,
the cover will collapse and thicken until an equilibrium thickness is reached (Pariset and Hausser 1961). This
process of mechanical thickening is commonly known as shoving, and an accumulation of this kind is often
called a wide river jam. When shoving occurs, a relatively long reach of ice cover will collapse, and the leading
edge will move a long distance downstream before new progression occurs.

The formula for equilibrium wide jam thickness is given by Pariset and Hausser (1961) as

2
BV, (1 . Paho)= 2thy +&(1_&)h_o (106)
puCH*\ PRyl goun? P\ Pl y?
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where B = width of the river
V, = velocity under the cover
M = ice-over-ice friction coefficient, approximately equal to 1.23
H = depth of water
C = Chezy coefficient
Ry = hydraulic radius of the water passage under the cover
h, = thickness of the ice cover
P, P; = densities of water and ice
T. = cokesion term in the bank shear.

According toPariset and Hausser, 7.k, has an approximate range of 75-91 Ibf ft-! during freeze-up. The current
model uses T, = 0.98 kPa (100 kgf m-2 or 20.48 Ibf ft-2). During the break-up period T, is usually negligible.

Equation 106 has two roots for 4. The smaller root is considered to be the physically correct solution for
thickness. There exists a maximum discharge in the river beyond which a solution does not exist and a stable
ice cover cannot exist (Pariset and Hausser 1961). For 1. =0, when the interaction wiih flow is neglected, this
condition is given by

2
BcQzH4 <2.8x% 107, (107)

Based on the analysis of Uzuner and Kennedy (1976) and Pariset and Hausser (1961), the following modified
form of eq 107 can be obtained for steady-state flow (Shen and Yapa 1984):

- Pi (f . ho] tuzB - 2tcho _Pi pi“g_ 08
+ H + i)=&V —=22C20 4y 1-¢ 1 (1 )
[fl p i f)dw 8g P8 ( C)( P) (Y

waere f and f, = Darcy-Weisbach friction factors related to the ice covers and the channel bed, respectively
d,, = depth of the flow under the ice cover
V. = flow velocity under the cover
e = porosity of the ice accumulation.

Equation 106 and eq 108 were obtained by treating the ice cover as an accumulation of granular material.

Both eq 106 and 108 were derived by assuming that the flow condition when the ice cover reaches the
equilibrium thickness is known. In practice, however, only the flow condition before shoving is known. A
solution procedure taking into consideration the interaction between the flow condition and the cover formation
is needed. The following discussion presents amethod that considers the interaction of wide jam formation with
the hydraulics within areach of the river. The method involves solving the coupled back water and jam equations
simultaneously for each reach where ice cover progression takes place, starting from the position of the existing
leading edge. This method is based on the Newton-Raphson procedure similar to that presented for hydraulic
thickening.

The following force balance equation can be written forthe case of anequilibrium ice jam within adiscretized
river reach:

2(Tchy + WNAX = (T; + T + T,)B Ax (109)

where f = longitudinal force of ice
T; = shearing stress of flowing water on the underside of the cover
Ty = component of the weight along the cover
T, =Capa IV, IV, cos8, = wind stress along the cover
P, = density of air
V, = wind speed
8, = angle between wind direction and downstream direction of the river
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C, = resistance coefficient depending on surface roughness
W = bank friction coefficient
7. = cohesive component of the bank shear.

Assuming complete mobilization of the granular mass, the balance between the passive resistance of the ice
cover and the net longitudinal force f gives

f=PiK2(l—%)ggi (110)

where K =tan2(7_‘.+ Q‘) 1-¢
2= w2+ &)1~ o)

e. = porosity of the cover
tan ¢ = internal friction coefficient of the granular ice accumulation.

Before using eq 109, 7; and 1, have to be determined using known variables. An expression for T; is deter-
mined by first assuming that Manning’s equation can be applied for the average flow condition prevailing in
the river:

v=Llp2Bsl? =1 p2BglP (111)

1
(4

where R; = hydraulic radius for the portion of the flow affected by the resistance on the underside of the ice
cover
R = hydraulic radius of the entire flow cross section
V = average flow velocity
S¢ = friction slope of the flow
n. = composite Manning’s coefficient.

The following expression is obtained from eq 111 for the shear stress due to flow:
. \3/2
v = pgRiS: = pg () RSy (112)
C

The weight component of the ice cover in the direction of river flow 1 is obtained by taking the weight of ice
and water in the voids into account:

Tg = PighoSt. (113)

An expression for 5_, is obtained using Manning’s equation and approximating R as A/2B:

=24302, 2| B
Se=2 anz[AmB]. (114)

Substituting the expressions for t,, T; and S¢in eq 109 and using a new variable y for y;K>,

. 2p 43
FiA.h) = &(1-&);. 2+M-2'/3Q_2ﬂ_[("_i)3ﬂ+2&”i+ac Pay, |v, kose,|=0. (115)
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Equation 99 is the second equation required in the procedure. Solutions of A and ki, are obtained by solving the
two nonlinear equations F(A4,h,) = 0 and F4(A,h,) = 0 simultaneously.

The solution of eq 99 and eq 115 can give two sets of roots for A and A,,. The two roots of h, correspond to
those obtained in the derivation by Pariset and Hausser (1961). In both cases the smaller root of h,, gives the
correct solution.
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Equation 107 for wide jams derived by Pariset and Hausser (1961) gives the condition for the existence of
roots in the wide jam equation. A similar condition exists for the present analysis. When the flow . ate is larger
thanacer* ..~ critical value, no solution exist foreq99and 115. This indicates that there is a critical Froude num-
berbeyu... which progression will not occur. This is similar toeq4.32 obtained by Pariset and Hausser (1961).

The interaction between ice cover progressionandriverflo.  ..aoresignificantinshallow rivers thanindeep
rivers, due to the large relative thickness #,A/B in ashallow river. The present procedure ias an additional length
parameter Ax in the formulation. Values of thickness and water depth obtained by this procedure are more
accurate for smaller values of Av.

Effect of freezing and cover stability
Michel (1986) pointed out that it takes only a little freezing to form a solid crist near the top surface ot the
ice cover. This can prevent shoving. Shoving can take place at any time after formation when the internal
strength is not capable of withstanding the extemnal forces. Conditions of failure of an ice cover due to shoving
can be formulated by considering the force balance of a section of ice cover along the longitudinal direction.
Assuming steady uniform flow and uniform cover thickness, a force balance can be expressed using eq 109.
For shoving to occur, the condition to be satisfied is given by

2tchy + 1y NAX < (T; + Ty + T,)BAX. (116)

Considering that the ice cover consists of a granular accumulation with a solid ice crust near the top surface and
a frazil deposit on its underside, the maximum longitudinal force fthat can be exerted by the ice cover per unit
width can be expressed in terms of maximum stresses in the ice cover layers:

f=fitfatfr (117)

where the subscripts 7, n and f represent contributions from the solid crust, the granular layer and the frazil ice
layer, respectively. Then

fi=ot (118)

fn=pl<z(1 —P—‘)g[‘-(“—"")r§+ "‘")tfrn} (119)
P/ {2 (l—ec) l-e.

ff=p1<'2(1_&)g1@,f2 (120)
P/ 2 (l—ec)

where 1, tr and ¢, = thicknesses of the solid ice layer, frazil ice layer, and the granular layer, respectively
egand e, = porosities of frazil ice and initial cover, respectively
o = strength of the solid ice crust.

According to Michel (1986), 6 = 0.8 MPa. The weight component of the ice cover in the direction of the flow
is

Tg=[Pi£’fi+ pigtn (1 - en)+ pgrnen+ Pigte (1- )+ pgreer) Sy (121)
=[pilti+ ta+ 11)+ (p- pi) (trer+ toen)] gSi. (122)
Using eq 112 to express 7; and assuming 1, = 0, the right side of eq 116 can be expressed as

(ti+74)B = pgSiB (gi—)m R+ %[q +{1 = et +(1 = egleg] + enty + o515 (123)
C
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and the left side can be expressed assuming K,'= K:

2(‘tcho + “lf) = 21c(’i + 1+ ’f) +2,

of; + (-% (xl - %) B— (1 - en)tn®+ (1 - eg)tnts + ;— (1- ef)r?]} )
(124)

K, is defined as in eq 110. Further study is needed for estimating the value of K. The failure of an ice cover
in a river reach can be checked using eq 116 because all ice and hydraulic conditions in eq 123 and 124 are
known. Equation 124 can also be written as

(2tct + p1f) =21t + 1y + tg) + 20114 +( 2upg [—(l — enktn®+ (1 — eg)tnts + _(1 - ef)r?] (125)

ec) 12

in which p = K. The values of the physical constants p, K, and . used in the wide jam case can be used in
this case too. The strength of the ice cover against shoving mostly depends on the strength of the crust. The
strength of the crust depends on the air temperature and the amount of solar radiation absorbed. The conditions
of shoving can be more accurately predicted if the strength of crust is modeled accurately.

ICE TRANSPORT AND COVER PROGRESSION

Two-layer model for frazil suspension and surface ice transport

Ice cover progression starts with the formation of frazil ice in a river. In supercooled turbulent water, frazil
ice crystals are produced over the entire fiow depth. Suspended frazil particles will grow in size, may cluster
together, and move up to the water surface to form surface ice runs. This upward movement is governed by the
buoyant velocity and the turbulent mixing. Surface ice flocs can collect into ice pans and floes when traveling
along the river. Water in the interstices can freeze to decrease the porosity of the surface ice pieces. The thickness
of the surface ice pieces can increase due to the accumulation of frazil ice particles on the underside of these
ice pieces and the downward freezing caused by surface heat losses.

Besides buoyant velocity and turbulent mixing, the amount of ice in the surface layer depends on the travel
time and the rate of surface heat exchange. When the travel time increases, the fraction of ice discharge on the
surface increases. A complete formulation for the process of frazil transport and the evolution of surface ice
discharge does not exist, although the vertical transport of frazil ice suspension in a river may be described by
the following advection—diffusion equation (Shen and Harden 1978):

d , 9, @__( ) 8( de\_ ¢ (126)
or ox ay ox \ " ax dy pilid

i}

where ¢ = volumetric concentration of the frazil suspension
u = longitudinal velocity
Vi = buoyant velocity of frazil ice
€, and €, = horizontal and vertical mixing coefficients
d = depth of flow

p; = density of ice
L; = latent heat of fusion of ice
¢, = net rate of heat gain per unit volume due to absorption of short-wave radiation.

The variable ¢, is a function of the distance from the water surface and the characteristics of the surface ice layer.
In this study a simplified two-layer approach is used.

In the following discussion the ice discharge in the river is considered to consist of a surface layer and a sus-
pended layer, as shown in Figure 14. The thickness uf the surface layer, although it varies with time and distance,
is considered to be negligible compared to the flow depth. The suspended layer is assumed to extend approxi-
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b. Mass and heat exchanges in a water column of unit area.

Figure 14. Two-layer system for ice transport.

mately over the entire depth. In the present model the influence of moving ice on the flow, as well as the dynamic
interactions between ice particles, is neglected. Volumetric rates of ice transport in these two layers are given
by the following expressions:

O =[h; + (1 — eg)h)CaBu (127
Qd =CyAu (128)
where Qsi and Q4 = volumetric rates of ice discharges in the surface and in the suspended layers, respectively
h; = solid ice thickness in the floating ice pans
e = porosity of the frazil ice in the surface layer
h¢ = thickness of frazil ice on the underside of floating ice pans
C, = areaconcentration, or the fraction of water surface area covered by floating ice particles
C, = average volumetric concentration of frazil ice in the suspended layer
u = cross-sectional average flow velocity in the river
B = top width of the channel
A = cross-sectional area of the channel.

The velocity of ice floes in the surface layer is assumed to be the same as the mean flow velocity u.
For the surface layer, the equation of mass conservation can b= written as the following:

2 (U + (1 - el B + 2 ([ + (1 - ) W) = 258

—=a%si + E, (129)
pL
Similarly, for the suspended layer, the equation of mass conservation is:
i(cv4)+_‘-9_(cv,qu)=8_(.l_‘gﬂ’ﬂ_-p-5 (130)
dt ox oL
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where p; = density of ice
L = latent heat of fusion of ice
¢,; = net rate of heat loss per unit area over the portion of the water surface covered by ice
¢, = net rate of heat loss per unit area over the open water portion of the water surface
D and E = net exchanges of ice flux at the bed and the interface between the surface and the suspended layers,
respectively.

Longitudinal dispersion of both volumetric and surface concentrations is neglected, assuming concentration
gradients are small.
The rate of mass exchange at the interface between the two layers can be expressed as

E =(—s €y, VbC‘A)
B y dy aty=d
=(0Vpchay =a—¥[hi + (1 - eghhr] Ca (131)

where o is a coefficient representing the probability that frazil reaching the surface layer will remain there and
Yis a coefficient representing the speed at which the surface ice is re-entrained into the suspension. Since €, is
small near the water surface, it is expected that o has a value close to 1.0 and yshould be close to zero, except
inrapidreaches. If we further assume that the rate of the exchange between the surface and the suspended layers
E/B can be represented by 8V,C,,, and neglect the exchange at the bed D, eq 129 and 130 become

a D€y _Bos{1-Cy) 8v,C, B (132)
Dt pL

and

CaBbD—t[hi +(1 - eghrg) + [ + (1 = eI —g;(CaB)

=%+evbcv3-[hi+(1-e,)hf]casa_“. (133)

ox

By assuming that the heat loss over floating ice pans is responsible for the growth of solid ice thickness, the
rate of change of solid ice thickness can be obtained using a quasi-steady-state finite-difference calculation:

Dhi _ 65 (134)
Dt espil

Expressing surface heat exchange in the form of §g; = o + B(T—T,), in which T is the temperature at the ice
surface, the rate of thermal growth of thickness can be determined.
For hs = 0, and no frazil supply to the underside of ice pans,

Dhi _ 1 _%+B(TmTa) (135)
Dt ol (l +&)
K;
For he¢ >0,

Dhi _ | _o+B(TuTa) (136)
Dt epil (14_%)
K;
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where T, = melting point of ice
T, = air temperature
K; = thermal conductivity of ice

o and B known constants in the heat exchange model.

Equation 136 is valid only when the solid ice does not grow beyond the bottom of the frazil accumulation at
the end of the time step.

The rate of change of frazil ice thickness depends on the rate of frazil ice deposition on the underside of ice
pans and the rate of downward growth of solid ice into the frazil ice deposit:

Dh; _ 8V,C, Dh;

. (137)
Dt (1-e¢) Dt
Substituting eq 136 into eq 137 yields
Dhe _ OViCy 1 @ +B(TwTs) (138)
Dr (l_ef) erpil (14_%
Ki

As with eq136, eq 138 is valid only when the solid ice does not grow beyond the bottom of the frazil ice
accumulation at the end of the time step. Since during the time step Ar the thickness of frazil deposited on the
underside is

0VCy

(1-¢)

the time required for the solid ice grow to the bottom of the frazil ice accumnulation is
1+ B4
OV ,CpAt K;
e p; .
( - ef) o+ ﬂTm_Ta)

At,

Ar = (139)

IfAr < Asie.

0VyCy O+ B(Twm-Ta)
(1-¢) . BAi
espil |1 + Ki)

then additional solid ice growth will occur during a period Ar — Af’ according to the rate described in eq 135.
Then the overall rate of growth of solid ice can be expressed as

Dh; _ ov,C, + ] o+ B(Tm" a) . (140)

AT

Equation 138 is valid only if Ar’ > Ar.
Using eq 135 and 137 (or their equivalent), eq 133 can be further reduced to

[+ (1~ ece] 2(CaB) = (1 - Ca) OVoCB - [hi + (1 -  Jr] CB gﬂ (141)
t X
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This equation describes the increase of ice area concentration in the surface layer due to lateral accretion and
flow convergence. Solutions of variables &;, i, C,, and C, can be obtained using equations discussed above. The
model has one calibration constant, 8. Since there is no analytical means to determine V}, accurately, and V),
always appears with 0, calibration can be done by considering 8V, as a single parameter. In river channels, both
the ice pieces in the surface layer and the frazil ice in the suspended layer are mixtures of particles of different
sizes. These size distributions are not considered in the present model. Values of k¢, h; and 8V, can be considered
as weighted average values for the mixture.

Solutions for two-layer model equations

An analytical solution for the governing equations for the two-layer model cannot be obtained. A simplified
solution for the surface layer, neglecting the existence of the suspended layer, was obtained by Hausser et al.
(1984) to examine the effect of floating ice on river ice production. Their solution used the following assump-
tions: a) all the surface heat exchange over the open water area contributes to the lateral growth of floating ice,
and b) the thickness of floating ice is computed by assuming that the surface temperature of ice floes is equal
to the air temperature.

The presence of surface ice floes on the water surface reduces the surface heat exchange and the total ice
production rate in the river. The present model uses a quasi-steady-state finite-difference solution to estimate
the effect of a surface ice layer on the reduction of heat exchange and the fraction of ice discharge in the suiface
layer. The parameters Ec and o, which account for the effect of a surface layer, are computed separately from
the main river ice model at each time step for each reach. The overbar represents the average value for a river
reach. Definitions of these parameters are given by eq 142 and 143:

ae=%o_ O (142)
0" 0Os+0Qq
and
a=2. (143)
Q'

Oland Qg are as defined in eq 127 and 128, and Q, is the rate of ice discharge if the effect of surface ice on ice
production is neglected. The value of Q, can be calculated from Q,'= QC, and

DCo _ hva(TmTa)
Dt pil

(144)

where C,, is the volumetric concentration of ice calculated by neglecting the effect of surface ice.

Inthe present study the variation of ice conditions is solved using the Euler method (Burden and Faires 1985).
By assuming a quasi-steady condition, DF/Dt in eq 132, 134, 137 and 141 can be replaced by u(dF/dx). The
terms on the right side are computed using values of the previous time step. A sample simulation for a steady-
state case is presented below for a channel with uniform flow. The parameters used are

Air temperature T, —-20.0°C
Buoyancy velocity Vp 0.001 ms-!
Width B 100.0 m
Frazil porosity es 0.5

Cross sectional area A 500 m?2
Step length Ax 100.0 m
Initial solid ice thickness (e 0.005 m
Average flow velocity u 0.5ms-1,

Initial values of A, C, and C, are assumed as zero at 1 = 0. The results are shown in Figures 15-18. The Euler
method was used instead of a second-order Runge Kutta method (Burden and Faires 1985) since Dhy/Dr is
discontinuous between hg =0 and h¢ > 0.
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Figure 15 shows that the frazil ice thickness remains at zero due to the thermal growth of the solid ice. Figure
16 shows that when the effect of surface ice is neglected, the rate of ice production remains constant if the air
temperature remains constant. Figure 17 shows that the rate of increase in surface area concentration C, de-
creases with the travel distance due to reductions in free surface area and the suspended concentration C,, as
shown in Figure 18. The surface fraction of the ice discharge o increases with the increase in C,. The ratio a.,
between the total ice discharge and the ice discharge calculated by neglecting the surface ice effect decreases
with increasing C,.

Parameters a, and o, are used to modify the quantities of ice discharge computed in the main program,
neglecting the effect of surface ice. In applying the parameter o, the main program is first used to compute the
ice production assuming no surface ice effect. The result is then multiplied by o, to obtain the correct ice dis-
charge. The amount of ice in the surface layer that contributes to the cover progression is obtained by multi-
plying the ice discharge rate by a factor o.

Values of Zx_c and o, are computed by applying the two-layer governing equations separately for each reach
as described earlier. Computations are carried out reach by reach along the river starting from the upstream end
of the most upstream reach having 0°C water temperature or zero isotherm. These computations are continued
up to the nearest leading edge and commenced again at the zero isotherm in the next open water area. Values
of variables at the downstream end of a reach are used as the upstream boundary conditions for the next reach
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downstream. The longitudinal element length in this computation is obtained by dividing a reach into 2040
equal sections to ensure the stability of the numerical scheme. Variables u, A and B are assumed to be constant
in a reach. Reach-averaged values of o and o, are calculated by

d
&= ol+og (145)
2
and
. i i
Gy =20 (146)
Q(‘).d"‘Q(').u

where u and d represent values at the upstream and downstream ends of the reach. Reach-averaged values of
thicknesses h; and h; are computed in a similar manner. These values are used as the minimum ice thickness
in the ice cover formation computation.

Two-layer model for skim ice run

Skim ice runs can occur inariver reach when the underlying water temperature is above freezing. Inthis case
the lower layer does not have frazil ice suspension, and the surface ice concentration is assumed to be
approximately 100%. Assuming that the entire water surface area is covered by skim ice that is free to drift with
the flow, the rate of transport of skim ice is

Qi =B hu (147
where A; is the skim ice thickness. The cross-section-averaged “water temperature” is

Ty =-B4pL .7, (148)
A pC,

where T is the average water temperature over the flow cross section underneath the surface layer.
The rate of growth of skim ice thickness can be calculated from
1 [0+ B(TmTa)

Y (Hﬁi)

T,) — hyi(Tg=Tm) | - (149)

The convergence and divergence effects caused by the changing river width are neglected. The rate of change
of water temperature in the lower layer can be expressed as

DTy _ hyiTa~Trm) .
Dt pCpA

(150)

Equations 149 and 150 can be solved for h; and T4 using the Lagrangian method. In the current model, quasi-
steady-state solutions of the equations are obtained using the Euler method discussed earlier. Reach-averaged
values of h; are used in the model for ice cover progression.

Progression of the initial ice cover

The initiation of an ice cover occurs as a result of the obstruction of a surface ice run by natural or artificial
obstacles. Natural obstacles are usually surface ice bridges formed by the congestion of surface ice runs. Static
ice covers formed across the river in a slow-flow region can also act as a natural obstruction to ice runs. The
most common artificial obstructions to ice runs are ice control structures, ice booms, weirs, bridges and dams.
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The phenomenon of ice bridging is not well understood, even though ice bridges usually form at the same
location of a river each winter. The formation of an ice bridge at a river section is related to the ice transport
capacity of the section and the rate of ice discharge from upstream. The maximum rate of ice discharge that can
pass through a river section not forming an ice bridge is dependent on the flow discharge, the channel topwidth
between banks or shore ice, the surface slope, and the size and concentration of the surface ice layer, among
other things (Shen et al. 1988).

When the hydraulic conditions permit, the leading edge of an ice cover will progress upstream due to the
accumulation of surface ice against the leading edge. This type of ice cover progression depends on the rate of
ice supply and the thickness of the ice cover formed. The conservation of surface ice mass at the leading edge
gives

)(VS+V

(0i-0, 2) =Bho(1 - ¢) (1 - &)V (1s1

S

The rate of progression of the leading edge V;, can be obtained from

(Qg—Qu)
Ve = . (152)
Bho{1 - e) (1 _e,,)-(—__Q's;Qu)

s

where ch = rate of progression of the leading edge
0, = volumetric rate of ice entrainment under the cover at the leading edge
B = width of the ice cover
e = porosity of individual ice floes
e, = porosity in the accumulation representing voids between floes
h, = initial cover thickness calculated using the method discussed earlier
V, = average velocity of the incoming surface ice particles.

Equation 152 is valid when

Bhy(1 —ep)(l —e)>(—Q-s';‘-;—Q"—):

S

otherwise the progression will take place at an infinite speed with a larger thickness /, given by

00
hy= : 153
B(1-ep)(1-e)v, (9

Further discussion of this case is given in the next section. When
i

Bho(1- ) (1- €)>> LQS—V——Q—“)

S

i.e., Vp << Vg, eq 151 reduces to

voo_ loi-0)
® (l‘e)(l_ep)hoB

(154)

Computational procedure
Due to the advection of ice in the river, ice upstream from the leading edge at the beginning of a time step
can reach the leading edge before the end of that time step. This leads to a continuous change in the rate of ice
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Figure 19. Definition sketch for the computation of ice cover progression.

supply at the leading edge during a time step. This effect is included in the model using a Eulerian-Lagrangian
numerical procedure, similar to the water temperature simulation discussed earlier. This procedure may be
considered to be a generalized upwind scheme commonly used in simulating transport processes.

The numerical procedure used in modeling ice cover progression is formulated by considering the following
phenomena:

« Theice discharge that passes the leading edge during the time interval Ar will contribute to the leading edge

progression during that time interval;

» The ice discharge includes contributions from the production due to surface heat exchanges and the ice

volume that will be added to the ice discharge if there is a collapse of the existing ice cover;

* Only ice in the surface layer, which is assumed to be equal to an o fraction of the ice discharge, will con-

tribute to the volume of ice supply for cover progression;

« The leading edge position will migrate upstream during time As; and

« If the leading edge progression stops before the end of the time step due to the effect of the hydraulic con-

dition, the ice discharge passing through the leading edge after the cessation of progression will not
contribute to the cover progression.

Consider the progression of the leading edge of an ice cover as shown in Figure 19. The leading edge pro-
gresses from Y to Z during the time interval between 1 and r*+1. The Lagrangian scheme will first compute the
ice concentration profile C'(x,/"*1) assuming no ice cover progression. This concentration profile includes the
ice production and the contribution from the collapsed surface ice cover. During this time step, ice particles
located at A and B will move to A” and B’. The amount of ice passing the leading edge Y that can contribute to
ice cover progression is given by the shaded area /I'b’b. The volume of the ice is given as

m-1
Ve =0nCidnAg + Y 0GCAA.+ AlupCrAm (155)
i=k+1
m-1
where Ar = Ar - [B8% 4 3 A_ﬂ) (156)
Uk =k+l Ui

fraction of the ice-covered length in the k# reach

fraction of the total ice discharge contributing to cover formation
average flow velocity in ith reach

average of concentration C’(x,#+!) of ice in i** reach

average cross-sectional area of the i*# reach

>10|x R
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Ax; = length of the ith reach
k = index number of the reach that contains the leading edge Y at time ¢*
m = reach number where a parcel starting at the leading edge Y at time #" is located at the end of time

step At.

If progression ceases before the end of the time interval, then the portion of the ice volume that passed the leading
edge after the cessation of progression should not be included in eq 155. This part of the concentration profile
C’(x,t+1) is restored to its original shape.

When the volume of the ice supply V is known, the length of progression x;, during At is computed using

Bhoyx {1 - e)=V .+ ax,CiA, 157
which gives
%, Ve (158)

Bh1-e)-TCA,

where h, = average thickness of the initial cover

B = width of the new ice cover

A = average cross-sectional area of the river section
_e. = effective porosity of the ice cover
C, = average ice concentration

p = subscript representing the reach containing the newly formed ice cover.

The case Bho('l - ec) < acEpZ P implies that a large amount of surface ice exists in the river. This large
quantity of surface ice is more than enough to form the initial cover of thickness 4,. Although rare in the field,
this case is treated by assuming that the initial cover in the reach will form at a thickness larger than h,. This
thickness depends on the ice supply and is calculated by

_ Ve +Ecx",C—'PXP
BX;,(I - ec)

’

(159)

where xp' =X Xy

When the volume V is removed from the concentration profile C’(x,#+1), the remaining concentration
profile cannot be correctly represented by only the remaining nodal point concentrations. An interpolation pro-
cedure is used to obtain equivalent nodal concentrations for C(x,r"+1), so that the total volume of the ice and the
center of mass of the ice contained in each reach remain unchanged. The latter restriction is introduced to avoid
artificial advection. This procedure was discussed in detail earlier.

The ice cover cannot progress beyond a cross section where the maximum local Froude number along the
width of the cross section exceeds the critical Froude number. In a one-dimensional model a considerable
amount of geometrical information is lost during the schematization. It is possible for areach having an average
Froude numberlessthanF};, tohaveacross sectionthat hasalocal Froude number exceeding Fyc. Inthe present
model, locations of possible critical cross sections, and the ratio between the local Froude number and the aver-
age Froude number of the schematized reach, are determined from the hydrographic charts. When these values
are provided as input conditions, local Froude numbers can be computed from the average Froude number of
the river reach. The control on the progression of ice cover can then be modeled correctly.

UNDERCOVER DEPOSITION AND EROSION

Transport and deposition of ice particles in ice-covered reaches are discussed in this section. The transport
of ice particles in an ice-covered channel is similar to the transport of sediments in an alluvial river, except that
ice particles move up due to buoyancy whereas sediment particles settle down. Based on this anzlogy, the trans-
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portofice along the river can be considered to consist of a coverload and a suspended load. Ice particles traveling
on the underside of the cover at a given location can have a number of origins. They include:

« Frazil ice produced in the upstream reaches remaining in suspension (this ice will add to the undercover

accumulation when it floats to the ice cover);

« Ice particles eroded from an undercover accumulation of an upstream reach or from the collapse of an

existing ice cover; and

» Surface ice discharge that was swept under the ice cover at the leading edge due to unfavorable conditions

for progression.

Laboratory and field studies of frazil ice transport are difficult due to the effect of thermal regimes and ad-
verse field conditions. The present understanding of the undercover transport is rather limited. Large accumu-
lations of ice particles on the underside of an ice cover are commonly known as hanging dams. Hanging dams
may be classified into two categories depending on the formation process (Shen et al. 1983). The first type of
hanging dams, referred to as surface ice hanging dams, are accumulations of large plates or frazil ice pans, which
were surface ice particles underturned at the leading edge during ice cover progression. Surface ice hanging
dams are formed near the leading edge of anice cover, usually during its upstream progression. The second type
of hanging dams, referred to as frazil ice hanging dams or frazil ice jams, are formed by the accumulation of
suspended frazil ice particles on the underside of an ice cover.

There are two mechanisms by which surface ice hanging dams are formed. In the first mechanism, ice floes
that are released from upstream reach the leading edge of an ice cover, submerge, move along the undersurface
of the cover, and get arrested at some point downstream. These floes can accumulate until a hanging dam is
formed. In the second mechanism the external forces acting on the ice cover exceed its strength, causing the ice
cover to collapse upon itself and subsequently thicken. This second type of hanging dam is essentially a local-
ized ice jam. Both mechanisms can occur either at the beginning of the winter during the formation of the new
cover or during the spring break-up period when ice floes are generated from the fragmentation of ice covers.

Frazil ice particles suspended in ariverare subjected to the buoyancy force, which tends tomove ice particles
upward, and turbulent mixing, which tends to disperse the particles and effectively move them from high- to
low-concentration regions. Undercover deposition requires a net upward movement of particles to bring them
to the underside of the cover. As the effective size of ice particles increases with time, buoyancy overcomes
turbulent mixing to create a net upward movement. This upward movement can also take place when ice parti-
cles move into a slow-flow area where turbulence intensity is low. Deposition or erosion of frazil ice particles
on the underside of the ice cover can change the size of a frazil ice jam.

A critical velocity, or Froude number, criterion has long been accepted as a means of determining frazil ice
jam or hanging dam thicknesses (Kivislid 1959, Michel and Drouin 1975, Tesaker 1975, Ashton 1986). In the
critical velocity concept, ice particles will be deposited on the underside of the ice coverif the local flow velocity
is low. Changes in hanging dam size can change the flow condition. When the thickness of a hanging dam in-
creases, the flow velocity will also increase due to the reduction in flow cross section. Deposition will cease
when the velocity is high. Ice erodes from frazil ice deposits when the flow velocity is high and ice particles
can no longer resist the hydrodynamic force exerted on them.

Field observations have indicated that the critical velocity varies not only from river reach to river reach but
also from time to time in a given reach. We believe that the undercover deposition or erosion is governed by
the ice transport capacity of the flow. Deposition will occur when the ice discharge exceeds the transport
capacity of the river flow. Similarly, deposits that are not frozen onto the cover will erode whenthe ice discharge
is less than the ice transport capacity of the flow. Unfortunately a theory does not exist that can determine the
ice transport capacity of a river. Simplified critical deposition and erosion criteria will be used in the study.
Erosion and deposition can take place in different parts of a river at the same time. This section describes the
one-dimensional formulation used in the present model.

Deposition and erosion criteria

Because of the lack of understanding of the detailed mechanics of undercover transport and hanging dam
formation, a simple critical velocity criterion is used to determine the location and size of hanging dams. Both
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critical velocity and critical Froude number criteria have been suggested in the literature (Kivislid 1959, Tesaker
1975). Using the 1aboratory data of Filippov (1974), Ashton (1975) obtained empirical relationships for under-
cover travel distance of ice floes:

{ .
A 160

where L = undercover travel distance of an ice floe before its rest
V = mean velocity upstream of the cover
Ap = p-p;
! = length of an ice block
pand p; = densities of ice and water.

Equation 160 gives some insight into the possible patterns of ice deposition near the leading edge.

Particle stability theories can also be used to calculate accumulation thickness by determining the critical
conditions for local velocity, depth and ice characteristics that allow the deposition or erosion of ice particles.
Tatinclaux and Gogus (1981) carried out a laboratory study aimed at determining the re-entrainment criterion
of an ice block resting under the ice cover. The following equation was developed by considering the rotational
stability of an ice floe along with laboratory experiments using simulated floes:

Fom— Ve _ I (161)

sl Lol

where F, = densimetric Froude number
V. = critical velocity under the cover for erosion
p = density of water
p; = density of ice
h = block thickness
L = length of the block
c = -2.26
Cy) = 2.14
c3 = 0.015.

At velocities greater than V., thickening should not occur. These laboratory studies are not sufficient to make
them usable in field applications.

Field studies in the upper St. Lawrence River suggested that the critical velocity for ice deposition is around
3.0fts~1(Shenetal. 1983). Thesestudies also show thathanging dams are affected by the transverse distribution
of the river flow. Once deposited in a hanging dam, frazil ice undergoes morphological and structural changes,
and the critical velocity can change accordingly.

Based on observations in the LaGrande River, Michel and Drouin (Ashton 1986) suggested the following
critical velocities for ice deposition:

* In narrow sections the critical velocity ranges from 0.9 m s-! at the beginning of the winter to 0.5 m s-!

at the end.

* In wide sections the critical velocity ranges from 0.8 m s-! at the beginning of the winter to 0.5 m s-! at

the end.

« After making corrections for back eddies and low flows, the local velocity of deposition is 0.9 m s~

In a recent study in the Yellow River near Hequ, Sun and Shen (1988) obtained an empirical relationship
between the thickness of frazil accumulation and the Froude number. They pointed out the inadequacy of the
critical velocity criterion. However, in view of the lack of a better method, the critical velocity criterion is used
in the present model.




Simulation of undercover deposition

Both ice cover progression and undercover erosion and deposition depend on the frazil ice concentration
distribution in the river. As explained earlier, progression takes place when surface ice reaches the leading edge
of an existing ice cover. Similarly, deposition can take place when frazil ice reaches the bottom surface of an
ice cover. Surface ice that is swept under the cover at the leading edge will also contribute to the undercover
deposition.

The rate of undercover deposition depends on the rate of ice supply reaching the underside of the ice cover.
The distribution of frazil ice under an ice cover can be represented by the following transport equation, which
is similar to eq 126:

&, 99 ) ( » 9 Vbc) (162)
ot x ax dy 8

where g/, and g, are turbulent mixing coefficients for flow underthe ice cover. The source termis not considered
in this equation, assuming short-wave radiation does not penetrate the ice cover. The boundary condition at the
top boundary is

t—:y%—v (1-a)=0 aty=d, (163)

where d,, is the depth of flow measured from the channel bottom to the bottom of the ice accumulation and o
is an adsorption coefficient or the probability that a particle reaching the top surface will remain at the surface.
At the channel bottom, assuming there is no bottom heat exchange or anchor ice formation,

dc

syg—vsc=0 at y=0. (164)

In a one-dimensional model, only depth-averaged concentrations can be considered.

Transport of frazil ice

The ice volume that can deposit in a given reach can be computed in a manner similar to the case of progres-
sion. The fraction of the total ice discharge B that can contribute to deposition in a given reach is determined
first. Since the total ice discharge is known at the end of a Lagrangian step, the volume of ice supply to the deposit
can be obtained by multiplying it by B.

In one-dimensional form the mass conse.vation of the ice in suspension can be written as

(c A)+—(C Au)= B[(sy v.,c eyﬁ-vbc ] (165)
}' =dw ay y=0,

where C, is the depth-averaged ice concentration. Assuming no exchange at the bed and replacing the square
bracket term on the right side by 8;V,C,, eq 165 becomes

9 (cA)+ 2 (CAu)=-BO,Y,\C, (166)
ot ox

where 0,V,,C, represent the rate of deposition of the frazil ice accumulation. Assuming steady uniform flow,
this equation can be approximated by

dC,
Au —Y =—-BO,\V,C,. (167)
[ 1"b

The variation of C, along the river becomes
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Figure 20. Definition sketch for the computation of under-cover deposition.

Cx)=C,exp (— G—IZ—LB{ + constant (168)
u

where C,, is the concentration at the upstream end. For a reach of length Ax, eq 168 gives
C,=C,exp (- M) (169)
Au

where C, is the average concentration at the beginning of the reach and C, is the average concentration at the
end of the reach. Let the coefficient f} represent the factor of the reduction of ice concentration over the distance
Ax. Then

e

Bc,

(170)

and

ﬂ=l—exp(&%@i). a7y
u

The concentration of ice remaining in the suspension after deposition is (1 — 3)C,. The parameter 8V}, is to be
determined by calibration against field data.

Computation of the ive supply that is available for deposition is similar to that for ice cover progression
explained earlier. Consider the longitudinal frazil ice concentration profiles at times 1 and **! as shown in
Figure 20. Parcels A and B at time " move to A and B’ at time #**1. In the computation, ice particles are first
transported to new positions at the end of the time step, as shown by C’(x,t**1), ignoring deposition. The volume
of ice that is available for deposition to each reach is then calculated and deducted from C’(x,#"*!) at the end
of the time step.

Concentrations at the center of each reach, as represented by ag, a; a,, and a5 in Figure 20, are considered
to be representative for the reach. The volumes of ice that are available for deposition in reaches Ax, and Ax .
are represented by A; and A, in Figure 20. The volume corresponding to A is

m-1

Vd =r-2L BkEk;kAxk + ; B|EiA—iAxi + At’-l;mEm (172)
i=k+1
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where
m-1
Ar = Ar— LB 4 Yy Ax;
Ui i=k+1 Ui

(173)

and ry = fraction of ice covered length in the k% reach
B, = fraction of total ice discharge in the reach that can contribute to deposition
u; = average flow velocity in the i*s reach

C; = average volumetric concentration of ice in the i*# reach determined by interpolation
A; = average cross-sectional area of reach
Ax; = length of the i* reach
k = number of the reach that contains the leading edge at time *

m = number of the reach where the particle B (starting at the leading edge at time ") would be located
at the end of the time step.

Ice deposition proceeds reach by reach from the leading edge of the ice cover downstream. A particlemoving
under the ice cover is to be deposited under the first ice-covered reach it meets unless the flow velocity is above
the critical limit. If all the ice volume available cannot be accommodated in a given reach due to the limitation
imposed by the critical velocity criterion, the excess ice will remain in the concentration profile and be deposited
downstream. The final concentration profile C(x,t+1) at the end of the time step is obtained bv removing all
the ice deposited under the ice-covered section from the ice concentration profile C’(x,¢+1). TV - 1 -, > concen-
tration profile is shown by the unshaded area in Figure 20. Conversion of the final shape into a shape that can
be expressed using single nodal values is done by interpolation.

Thickness of a frazil deposit

The thickness of a frazil deposit under an ice cover depends on the amount of frazil ice that is available for
deposition and the hydraulic conditions that determine the limiting condition for deposition. As ice deposits
under the ice cover, the hydraulic conditions are affected due to the reduction in the flow cross section. The
following derivation assumes that the hydraulic conditions do not change significantly during a time step and
that the water level remains unchanged before and after deposition. Based on the critical velocity criterion, the
condition for deposition of frazil ice under the ice cover can be expressed as

2.,
< (174)
A d
where v4 = critical velocity for ice deposition
A = net area of flow
Q = flow rate in the river.

Assuming that the ice cover is floating freely, the following expression is obtained by equating the river cross-
sectional areas under the water level before and after deposition during a time step:

A+ —h+—h+&h +—"r) A+ —qh+—h+&h +—pih (175)
Pw Pw Pw Pw Pw Pw

where Py, Ps, Pi- Py and pg = densities of water, snow, solid ice, initial cover formed by ice fragments and
frazil ice layers, respectively, as defined earlier

frazil ice thicknesses before and after deposition

average width of the river

hro and hf
B

Substituting A of eq 174 into eq 175, the following equation is obtained for the maximum thickness of frazil
deposition:
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hy =hfo+fi(’lg__Q-_ (176)

where kg, is the maximum allowable thickness of a frazil deposit. The maximum volume of ice that can be
deposited with a uniform thickness is given as

Vim = B rAx(1 — e9) (hge — ho) a7

where ris the fraction of the ice-covered length in Axand e¢is the porosity of the frazil deposit. Since ~ simplified
formulation is used in treating the interaction between the ice deposition and hydraulics during a time step, the
allowable frazil deposit thickness calculated is not precise. The interaction effect can be considered more
accurately by a formulation similar to that for ice cover formation described earlier. However, since the rate of
deposition is generally small and the interaction will be accounted for in the next time step, the simplification
used in the present model is acceptable.

Erosion of frazil ice

Frazil ice is assumed to erode when the local flow velocity over frazil ice increases beyond a critical value
ve. The critical velocity of erosion can be expected to be higher than the critical velocity of deposition because
the bond between frazil particles in the deposit may have been increased due to sintering and freezing. The incip-
ient condition for frazil ice erosion has some similarity with the incipient conditions for sediment erosion, but
modeling in the case of frazil ice is more difficult because of the effects of metamorphism of ice. The model
needs v, as an input, which can be obtained from field observations or calibrated using observed flow and ice
conditions.

As shown in Figure 20, if the & reach is subjected to erosion, eroded ice particles will be re-entrained into
the flow and distributed between al' and a; during the time step Ar. Since there is no theory available for esti-
mating the rate of erosion, the current model assumes a rate of erosion that will add a concentration equal to
the current concentration in the river.

When the water temperature is above freezing, part of the eroded frazil ice will first absorb the latent heat
of water tomelt and bring the water temperature down to 0°C. This concentration can be computed by distribut-
ing the remaining volume of ice in the flow passing over the section. Erosion in warm water (above freezing)
is possible during break-up.

The maximum thickness of a frazil deposit that can remain after erosion k¢ is governed by the following criti-
cal velocity criterion:

Qcy, (178)
A

where v, is the critical velocity of erosion. An expression for hg is

e < h +ﬂ(f‘.2-£). (179)
=M 0w \B By,

The volume of ice that enters the stream as a result of erosion is given by

Vim=Brax (hgy ~ he) (1 - ¢p). (180)

THERMAL GROWTH AND DECAY OF ICE COVERS

The thickness of an ice cover can be changed by thermal growth and decay as a result of heat exchange with
the atmosphere and the river water. Determining the ice cover thickness is important in river ice modeling. The
ice cover thickness can affect the flow cross-sectional area and hence the velocity of the flow. The ice cover
thickness is also important in determining the stability of an ice cover and its break-up. A solid ice cover can
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consist of layers of black ice and white ice in addition to a snow cover and frazil accumulations. When repeated
cycles of heavy snowfalls and cooling take place, the formation of slush layers sandwiched between white ice
layers can occur.

The rate of thermal growth and decay of an ice cover is governed by the heat exchange at the top and bottom
surfaces and the heat conduction in the ice cover. Heat exchange across the top surface depends on air tempera-
ture, wind velocity, humidity, short- and long-wave radiation, albedo and cloud cover. Heat exchange at the bot-
tom surface depends on water temperature and flow velocity. Heat conduction depends on the thermal conduc-
tivities of ice, snow or white ice, which are functions of porosity. Since the horizontal extent of the ice cover
is much larger than its thickness, the growth or decay of an ice cover can be treated as a one-dimensional prob-
lem. Many methods have been used to model the thickness of ice covers.

Although a numerical solution of the full unsteady equations is possible, simple steady-state solutions are
commonly used in river ice problems because the thicknesses involved are small. The current model assumes
aquasi-steady state and uses a finite-difference method to model the variation of black and white ice thicknesses
with time. A linear heat transfer model is used to compute the heat exchange at the top surface, and a turbulent
heat exchange coefficient is used to model the heat exchange at the bottom.

The degree-day method (Stefan 1891) has long been used for predicting ice cover thicknesses in lakes and
rivers. In this method the ice thickness A is given as

h=o, VS (181)

t
where § =I(Tm—Ta)d = cumulative freezing degree-days of air temperature since the formation of the cover
at time /g

time from the formation of the ice cover

T,, = freezing temperature of water

Ta = air temperature

oy, = empirical degree-day constant.

o
t

Typical values of o that have been used for ice covers of different conditions are shown in Table 5. Equation
181 cannot be used to simulate the melting of an ice cover.

Table 5. Typical values of oy, (from Michel 1971).

Ice cover condition oy (cm °C-12 day-12)
Windy lake with no snow 2.7
Average lake with snow 1.7-24
Average river with snow 0.4-0.5
Sheltered small river with rapid flow 0.7-14

Bilello (1980) suggested the use of accumulated thawing degree-days to describe the decay and break-up of
ice covers. In his model the ice thickness is given as

h = hypax — 06ST (182)

where /i, - maximum ice thickness at the beginning of decay

St = accumulated thawing degree-days
o, = empirical constant.

Shen and Yapa (1985) developed a unified degree-day method for simulating the thermal growth, decay and
break-up of river ice covers in the St. Lawrence River. In this model the variation of the ice cover thickness was
related to the ambient air temperature using the formula

h = (hg?+ oS )2~ B 18 (183)
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where £ = ice cover thickness
h, = initial ice cover thickness
o4. f, 8 = empirical constants.

The coefficient o, is a function of time.

A number of finite-difference models were developed to determine the ice cover thickness in lakes and seas.
Maykut and Untersteiner (1971) presented a one-dimensional model for seaice that included the effect of snow
cover, salinity and internal heating due to short-wave radiation. The model was applied to the central Arctic to
simulate the thicknesses of young sea ice when the thickness was on the order of a few meters. In the model,
heat exchange at the top surface, ocean heat flux, snow accumulation, ice salinity and albedo were treated as
inputs that change with time.

Simulation models for sea or lake ice covers have undergone many improvements over the years (Maykut
1978, Sydor 1978, Wake and Rumer 1979, imiiler 1980, Gabison 1987). Ashton (1979) developed models de-
scribing the suppression of river ice by a thermal effluent. In Ashton’s model the convection of thermal energy
in the river water was simulated numerically using a Lagrangian scheme. Surface heat exchange across the air/
ice interface and the air/water interface were expressed using simple equations and heat transfer coefficients.
Greene (1981) developed a numerical model and an analytical model. These models were used to simulate ice
coverthicknesses inthe upper St. Lawrence River. A detailed numerical model by Shenand Chiang (1984) treat-
edthe riveras a coupled air-ice~water—bed system by taking into account the heat exchange at all the interfaces
in the system. Simulated results for the St. Lawrence River were in good agreement with observed data.

Leppirintd (1983) and Bengtsson (1984) considered the effect of snow ice formation. In Leppdrinta’s
model, snow slush was directly transformed to snow ice, completely neglecting the thermal process. The snow
surface temperature was assumed to be the same as the air temperature. The packing of the snow layer was in-
cluded using an empirical formulation. Bengtsson considered the effect of the surface thermal resistance and
the conductivity of white ice in calculating black ice growth. Unfrozen snow slush between layers of white ice
was directly converted to snow ice. The existence of the capillary fringe in the snow slush was neglected in both
these studies.

Shen and Lal (1986) included the effects of capillary rise and the layered formation of white ice in a thermal
growth and decay simulation model. The insulating effect of the snow layer and the presence of frazil ice were
also considered in this model. Heat exchanges at the top and bottom surfaces were computed using a linear
model and a turbulent heat exchange coefficient, respectively. The model can simulate thickness variations of
black ice, white ice, snow and slush, if the weather conditions, snowfall, frazil thickness and porosities are given.
The simulation of thermal growth and decay in the present study is based on a simplified version of the model
of Shen and Lal (1986). It is capable of simulating both black and white ice thickness as well as snow and snow
slush thicknesses.

Allof the previous river ice models assumed quasi-steady-state thermal conditions in the cover. This approx-
imation is justified in view of the small river ice thickness with respect to the time step used in the computation
(Greene 1981).

Surface heat exchanges

The turbulent heat exchange at top and bottom surfaces of an ice cover governs the rate of change of the ice
cover thickness. In the present model the heat exchange at the top surface is expressed using a linearized model
similar to eq 43 proposed by Dingman and Assur (1969):

Or=-0¢r+ 0 (184)
and
0n=05+B(T,-T,) (185)

where ¢7 = net heat flux to the atmosphere from ice or snow surface (W m-2)
¢, = net heat flux to the atmosphere excluding short-wave radiation (W m-2)
or = net short-wave radiation (W m-2)
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T, = surface temperature (°C)
T, = air temperature (°C)
o; and B; = coefficients that can be derived from the complete heat exchange process including long-wave
radiation, evaporation and sensible heat transfer.

To further simplify the analysis, the solar radiation is sometimes lumped into the linear model:
or=af+ (T~ Ty (186)

Since ¢g varies with latitude, o and B; values depend on the latitude. Coefficients o, B;, a? and B; are
functions of wind velocity, cloud cover and relative humidity. The following heat exchange models were
obtained from multiple linear regression analysis of weatherdata at Massena, New York, for five years (Lal and
Shen 1990b).

For heat exchange from the snow surface to the atmosphere,

0, = 2521(T;-T,) (s=128.1,r=0.72) (187)
op = 83.65+18.64(Ts~T),) (s=108.8,r=0.72) (188)
Or = 2336(T;-T, (s=75.7,r=0.84) (189)
oy = 5492+ 19.64(T;~-T), (s=69.4,r=0.84). (190)

For heat exchange from the ice surface to the atmosphere,

0, = 1738(T,-T,) (s=719,r=0.79) (191)
O = 64.41+1232T,~T,) (s =58.0,r=0.79) (192)
or = 1331(T,~T, (s=44.0,r=0.85) (193)
Or = 32.55+12.19(T~T,) (s=36.9 r=0.87). (194)

Statistical indicators obtained from linear regression are the standard error estimate s and the coefficient of
correlation r.

Turbulent heat transfer from the flowing river water to the ice cover has been studied by Ashton (1973),
Calkins (1984) and Marsh and Prowse (1987), among others. In the present study the formulation by Ashton
(1973) is used. In this formulation the turbulent heat transfer is expressed as

Owi = hilTy — Tyy) (195)
where ¢; = heat exchange (W m-2)
T,, = water temperature (°C)
T, = freezing point of water.

The coefficient h,,; can be evaluated by the formula (Ashton 1973)

0.8 0.2
hy; = C i UED]] (196)

w1 w

where C,,; = 1662 (W s0-8 m-2.6°C-1)
D, = flow depth (m)
U,, = average flow velocity (m s-1).

The coefficient C,,; may be increased by up to 50% when relief features form on the underside of the cover.
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Simulation of thermal growth and decay
The equation governing the one-dimensional temperature distribution in an ice cover is given by (Shen and
Chiang 1984)

JT _ 0 oT
T (L AT\, o, (197)
i % 22\ a3z + ¢v(z t)

where ¢ = time
z = distance measured downward from the top surface
T = temperature in the cover
k; = conductivity of ice
p; = density of ice
C; = specific heat of ice
¢,(z,0) = rate of internal heating of the ice cover due to the absorption of penetrated short-wave radiation.

The boundary condition at the top surface is

oL dh=or- k9L atz=0 (198)
dr 0z

where L = latent heat of fusion of ice
h = thickness of the ice cover
Ot = net heat loss at the air/ice interface.

Any water on the top surface of the ice cover is assumed to drain through the cover. In this study dh/dr = 0 when
the cover surface temperature is below freezing. The boundary condition at the bottom boundary is

pil,“ii't—'=—¢wi+kig—: atz=h (199)

where ¢,,; is the net heat flux from the water to the ice cover.

Rate of growth in the absence of frazil accumulation

Time-dependent ice growth and decay can be determined by assuming one-dimensional quasi-steady-state
calculations at each time step. At steady state the solution to the governing eq 197 gives a linear temperature
distribution ifthe rate of internal heating of the ice cover §,(z.f) is neglected. The quasi-steady-state assumption
has been shown to be acceptable for river ice covers because of the relatively small thickness (Greene 1981,
Ashton 1982). At steady state the heat flux across different layers of the ice cover is the same if there is no water
in the snow cover. As shown in Figure 21, the heat flux in each layer can be obtained using ¢ = k(37/dz):

¢i = f‘_l (Tm - TZ) = ¢s (200)

¢1>s="—w(12-7,)=¢a (201)
W

0, = f;i (1,-T) (202)

where k = thermal conductivity
h = thickness
i, w and s = subscripts denoting black ice, white ice and snow, respectively.

The boundary condition at the ice/water interface is obtained using eq 199 and 200:

54




Temperature
)+

Ta
Ts

¢ST::::::::. Snow (hs)
Water NG :
Level
Y White
¢ - _ ice (hy)
hew . ' Black
Ice (h; )
Growth of :,:.: “““““““““““““““““““““ IO OO . .
e B NN o Frazil (hy)
TTR7RY VNN TIRSTTRY
Channel Bed
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dh
02— bui=pL d—}:' (203)

where ¢,,; is the heat flux from water to ice. In the absence of melting, the boundary condition at the top surface
is obtained using eq 198 and 202:

6. =07 (204)

where ¢ is the net heat exchange at the top surface. The rate of growth dh;/dt given by eq 203 can be determined
if ¢, or ¢ is known. The latter can be determined in terms of T using eq 184 or 186, and eq 195.

L f’f =—dp+ @+ B(TeTa)— hudToTn). (205)

T, can be determined explicitly when a linear heat exchange model is used. Linear models given by eq 184 or
186 can be used with eq 200, 201 and 202 to eliminate T, T, and ¢, and obtain the following expression for
T

[(Ta"' br—r (ﬁ-{- bl+ b + T_m}

T,= B ks kw ki . (206)
hs y hw  hif 1

ks kw ki B

Equation 205 is valid only if T < T,,. When there is no frazil ice accumulation, black ice growth takes place
on the underside of the ice cover at a rate given by this equation.
An alternative expression for the rate of growth can be obtained by substituting eq 206 into eq 205:

dh _ _—9r+a+ B(Tm~Ta) _ !'li-(Tvr-Tm)-

dt plle fsy Pw Bi) Al

B ks kw ki

(207)
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Equation 207 is also valid only when T < Ty,. Under steady-state conditions, T < Ty, is synonymous with T,
< T,, except when ¢g < o. This shows that ice cover growth takes place on most occasions when the air
temperature is below freezing. Equation 207 gives the steady-state governing equation for the rate of growth
of black ice. Equation 207 is valid only for -¢g + & + (T, - T,) > 0.

The condition for ice cover growth starting from skim ice of nearly zero thickness can be determined by
obtaining the limiting condition for dh;/dt to be positive as h; — 0. Using eq 207, it can be shown that the latter
condition is equivalent to

T, < T, - 98+ AT Tyl "WéTW‘Tm'] : (208)

This shows that skim ice growth can start in turbulent water only if the condition in eq 208 is satisfied.
It can also be shown from eq 207 that for a given set of weather conditions, there exists an equilibrium
thickness h;, that has zero growth and decay or dh;/dr = 0:

hs =_k.(_l_+_hl+ff§_)+/£i_[‘¢k+a+ﬁ(7-m‘ a)]. 209)
® ‘ B ky ks B hyi (Tw"Tm)

Analytical expressions for ice thickness can be obtained by solving eq 207 for 4 as shown below. Neglecting
bottom heat transfer, the rearranged equation can be integrated as shown below:

hi
I (L+ﬁ§+f'_\1+ﬁ)dhi=_l_s 210)
W B ks kw ki PLB
where
t+At
S =J [-or+ o+ B(Tm— Ta)ldr (211)
14

and hf and h; are the black ice thicknesses at times r and t+At¢, respectively. The solution of the quadratic equation
obtained from eq 210 is

) 1”2
;{k_k_"_ﬁ_)[(k_’i“h)’ 2&1] | @)
B k S k w ﬁ ks k w pi'LiB

The degree-day formula is a simplified form of eq 212 (Shen and Yapa 1985). This explicit expression for A;
is possible only when the heat transfer from the river flow is neglected. When heat transfer at the ice/water inter-
face is included, eq 207 caa be suived to obtair the fuiluwing expression:

At = % (b —ho) + "d;z”c m(:: ;}’; @13)
where
a=pL 1+%+9’1ﬂ) @14)
s w
b= % 215)
c= Op+ O+ B(To=Ta) = hwa (Tw-Tm) |1+ P54 %:'—W-) (216)
. kw
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and

d=—TwaB @17)

Since h; cannot be expressed explicitly, eq 213 is not commonly used.

A solution to eq 205 or 207 can be obtained using a numerical procedure for solving initial value problems.
Euler’s algorithm provides a simple approach for solving for 4; with first-order accuracy (Burden and Faires
1985):

hi=& + h{At (218)
where
; _dhy
dt

The error in the rate of growth for the simplified case with no snow and white ice can be shown as

€=("& —_ d_h.'
dt/gq dt /ex

=1 _h%At
2 (ho + A
p

[-or+ 0 + B(Trn-TIF k2 (219)
p?LZBZ(h? +ﬁ)’
B

=1
2

where (dh/dt)¢ is the finite-difference approximation of (dh/dr) based on k;, with hg = h,, = 0. It can also be
shown that the finite-difference algorithm of eq 218 is accurate only if € << (dh;/dr), or
WAL<< -l—(h? + kA) ) (220)
2 B

Equation 220 is useful in selecting a time step for the finite-difference formulation. The error € decreases with
an increase of (hi")3 and will be negligible unless the thickness is very small. The accuracy of the thickness
determination for very small values of h; can be improved by using the analytical formula eq 212 until 4;
becomes large enough to satisfy the condition given in eq 220.

Decay of ice cover thickness

When T (computed using eq 206) is greater than T,,, melting of the top surface of ice cover takes place, and
the surface temperature T is equal to T;,. When melting takes place at the top surface, the temperature inside
the ice, snow and frazil layers remains isothermal at 0°C, and thermal growth is rot possible at any part of the
ice cover at steady-state conditions. When a snow layer is present on the top surface of the solid ice cover, the
rate of decay of the snow thickness takes place at a rate given by

(1- e ‘;—"j= —op+ 0+ BT Ty @21)

The rate of decay of solid ice in the absence of snow cover is
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dhis _

- —OR+ 0 + BT — Ta) 222)

piL
where A (= h, + h;) is the thickness of the solid ice.

In the above analysis the melting water is assumed to be draining through the cover. Wake and Rumer (1979)
examined the magnitude of the error introduced by the assumption of a well-drained ice surface compared to
an undrained ice surface. Their analysis indicated that water accumulated over melting ice has no significant
effect on the rate of melting.

Thermal decay of ice can take place at the bottom of the cover when T, > T}, If the rate of melting of solid
ice is given by

ol L‘”’f = —hi(Tw-Tu) (223)

where A, is given by eq 196. If frazil ice is present, decay takes place at the frazil/water interface at a rate given
by

Pi L(l = ef) % =—hy; (Tw" m)~ (224)

Effect of frazil ice accumulation

The presence of a frazil ice layer on the underside of the ice cover can accelerate the growth of ice cover
thickness because the frazil ice layer insulates the ice cover from the warm water below and because only the
pore water in the frazil layer needs to be solidified for the downward growth of the ice cover. If a frazil ice layer
is present below the solid ice cover, solid ice growth will take place into the frazil ice layer when T < T,,. The
rate of growth is given by

ef@-ii= _¢R+a+B(Tm‘Ta)_ (225)
dt piLB(.l_-f-li-g. h_W+fl.l_
B ks kw ki

where hy4 is the position of the interface with respect to solid ice. Equation 225 is the same as eq 205 or 207 when
there is no decay at the bottom, except that p;L(dh;/dr) is replaced by ep;L(dh;¢/dt) in the equation. Equation
225is valid only when the solid ice does not grow beyond the bottom of the frazil accumulation. This condition
is satisfied when the rate of frazil ice deposition dhgy/dt is more than the rate of solidification in the interstices
of the frazil layer, i.e. dhgg/dt > dh;/dr. The corresponding rate of change of frazil ice thickness in the absence
of thermal erosion is

dh¢ - dhgq ) (226)

dt dr

If the rate of frazil deposition is slow such that dh¢g/dt < dh;i/dt, then it is necessary to treat the growth in the
frazil layer and the additional growth separately using a procedure similar to that described earlier.

Layered ice cover formation

Layeredice covers may form when repeated heavy snowfalls occur between cold weather spells. Snow slush
formed as the result of ice cover submergence can form white ice as a result of cooling. However, a layer of
unfrozen slush may remain entrapped if anew slushlayer is formed on top of an existing slush layer. This process
can lead to a layered formation in the cover. The modeling of this type of ice cover will be discussed in this
section.
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Submergence of the snow layer

Alayerof snow can accumulate on top of the solid ice cover as a result of wind-blown snow or direct snowfall.
When the snow accumulation is heavy, the bottom surface of the snow layer will sink below the water surface
to form snow slush. The condition for submergence of the snow cover is

hsub > hw + hi + hf. (227)

Balancing buoyancy forces with weight, and assuming no submergence of snow, the depth of submergence is
given by

hsub=p_l'[(1 - eg)pihs + Py + (1 — ey pi by + (1 — e )i g + €5 P i) (228)
W

where e, e,, and erare the porosities of snow, white ice and frazil ice, respectively, and p; and p, are the densities
of ice and water, respectively. Substituting h,, of eq 228 into eq 227, the condition of submergence can be
expressed in terms of the snow layer thickness:

> Aplhy + by + (1 - edhg) + ey hup; (229)

) (1 - es)pi

where Ap = p,, — p;-

When the snow layer is thick enough to satisfy the condition given by eq 229, snow slush will form. As soon
as the bottom of the snow layer submerges, a capillary fringe will form, and water rises to a height CR above
the hydrostatic level. The thickness of the slush layer, after considering the effect of the capillary fringe above
the phreatic surface, can be calculated assuming free-floating conditions. The thickness of the slush layer
formed due to submergence is

hyy > CRPw + (1 = es)hspi = hwewps — Aplhi + by + (1= eg)h] (230)
Pw = Psw + (1 ~ &) pi

where hg,, = thickness of the snow slush layer including the capillary fringe
psw = density of slush = (1 — ey)p; + Sespy
CR = capillary rise
hg = thickness of snow layer before including the snow slush
S = water saturation of the slush, which is the fraction of voids filled with water.

Equation 230 is valid for A, < hg. The thickness of dry snow left is A — hg,,. If g, > g, no dry snow can exist,
and A, = h,.

Formation of white ice

A consequence of the presence of the slush layer formed by the submergence of the snow cover is the
formation of white ice. As a result of surface heat loss, white ice will grow downward from the top surface of
the slush layer, starting from zero thickness. The portion of the cover below the top surface of the slush layer
will remain isothermal at 0°C. The surface temperature of the cover can be determined using eq 206 by setting
hy, = h;=0. If dry snow is present on top of the slush,

st
T = ks B B

-

(231)

Pl
P~

osd 4 Twoy
ks kw

-
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where hg4 is the thickness of the dry snow layer left over slush. If T < Ty, the rate of growth of white ice can
be calculated using the equation

piLeS ‘%h Or+ o+ B(T~ Ta) (232)

which is valid for (dh,,/dr) > 0 or —¢g + 0.+ B(T; - T,) > 0, as mentioned before. If there is no dry snow left on
the ice cover after the capillary rise, white ice will grow downwards starting from the top surface in the slush
layer. The growth rate can be determined by eq 232, with T given by

{MT3+2&_2)+L&]
AN WAN

(233)

hw y 1

k, B

When computing the ice thickness starting from zero, the error term involved with dh,/dr is large for small

values of h,,, as described earlier. The error can be reduced by using an analytical solution similar to eq 212.
In the case of multiple slush layers, if the top slush layer is completely frozen to form white ice, the next layer

below will freeze from top to bottom, and the process will continue. The rate of growth of white ice can be

determined using eq 205 and 206. Black ice growth starts only after all the snow slush is frozen.

MODEL APPLICATION AND CONCLUSION

Application of the model

The mathematical model RICE for simulating river ice and flow conditions is constructed based on the
analytical and numerical formulation developed in the previous sections. A slightly simplified version of RICE
has been used in the model RICEOH. This model is applicable to a dendritic river system and has been applied
successfully to the Ohio River system (Shen et al. 1988a). In this section the model will be applied to the upper
St. Lawrence River.

The upper St. Lawrence River (Fig. 22) flows from Lake Ontario at Kingston, Ontario, to the Moses—
Saunders Power Dam at Massena, New York, with a total length of 160 km. Figure 23 is a diagram of the river
discretization. This discretization considers the need for the hydraulic computation, with additional nodal cross
sections that are needed to reflect controls for ice conditions.

The model parameters must be calibrated when applying the model toariver. The bed roughness coefficients
were calibrated first for the open water condition. The bed roughness and heat exchange coefficients are the only
parameters that can be calibrated independently from ice conditions. All the remaining parameters described
below are related to changes in the ice condition. Since the ice condition is affected by many variables, all these
parameters should be calibrated simultaneously. Unfortunately the common calibration method Jescribed
earlier cannot be used because partial derivatives of the model output with respect to some model parameters
(model sensitivities) are not continuous in some cases. An iterative calibration procedure is required in such
cases. The following calibration sequence is adopted to obtain values for model parameters.

Parameters related to the ice cover area and thickness are first calibrated to match the field observation.
Localized non-uniformities in channel geometry have to be taken into account during this stage of calibration.
Parameters calibrated at this stage are the ice cover porosity, cohesion and critical Froude numbers. In the
second stage the ice cover roughness coefficients are calibrated using observed water levels. Buoyant velocity
is calibrated finally to obtain the correct rate of progression and thickness of frazil deposition. Adjustments on
previously calibrated parameters are needed at each stage of the calibration until the simulated ice and hydraulic
conditions match field observations.

Simulation runs were carried out for 120 days. The selected starting date was 1 January 1980 to allow open
water conditions to prevail for a few weeks before an ice cover formed. One day was used as the time step in
the simulation. This is partly because most of the available observed data were for one-day or longer intervals.
Diurnal variations of the ice conditions are not simulated.

60




Loke T _
Ontarnio

Cape
Vincent

A Woler Level
Stalion

Ice Thickness
® Station

V) Typical Open-water
Area

Alexondria
Boy

(0] S miles
L.L—L_A_L—l
Figure 22. Upper St. Lawrence River.
Kingston Ciayton
Lake 1 O 2 3 N4 S 6
Ontario 2 o/ W 8- O ®_
Ogdensburg
8 9 10 1 12 13
O aman O O Da e DS DS D
Cardinal Iroquois Leishman Pt.
15 1 17 1 1 2
Waddington Morrisburg
22 o~ 23 o~ 24 .~ 25 26 27
—B—O—6—6 D O——@
Massena
29 30 o~ 31 o 32 Lake
@ an \3.11 @ St. Lawrence
Moses-Saunders
Power Dam

Figure 23. Schematization of the upper St. Lawrence River.
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Results and discussion

The results of the simulation for the upper St. Lawrence River are presented in this section. Longitudinal
cross sections of the ice cover, time-dependent variations of important ice and flow variables, and statistical
indicators are included in the results. Appendix A gives an explanation of the parameters used in the statistical
error analysis.

Figures 24 and 25 show variations of the air temperature at Massena and the flow rate at the Moses—
Saunders Power Dam. Incorporation of detailed weather data into the heat exchange process is possible using
an appropriate heat transfer mode] (Lal and Shen 1990a). Diurnal variations of ice conditions c¢an also be
predicted in the same manner.
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Figure 2-4. Variation of air temperature with time at Figure 25. Variation of flow with time at the Moses—
Massena. Saunders Power Dam.

Cross-section-averaged flow velocity and Froude number along the river change constantly with time. The
simulated velocity and Froude numberalong the river on 30 January 1980 are shown in Figures 26 and 27. These
figures indicate regions of possible occurrence of skim ice formation, shoving and control sections for leading
edge progression.

Figure 28 shows the progression of the leading edge with time. Observed positions of the leading edge
marked in the figure were obtained from aerial photographs. Different markers are used to indicate different
leading edges. The figure shows that the simulation agrees reasonably well with the observed data over most
parts of the river, except in high-velocity regions. In the upstream region the ice condition is highly nonuniform,
with skim ice, juxtaposition and jam formation often coexisting in a river reach. In this region most of the river
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Figure 26. Flow velociryalong the river on 30 January 1980. Figure27. Froude number along the river on 30 January 1980.
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surface is covered by thinice, and theice conditionis very unstable. This makes itdifficult toidentify the leading
edge in the aerial photographs and to compare the observed and simulated results.

A better illustration of ice cover formation with time is shown in Figure 29. In this figure, different shades
are used to represent skim ice and accumulated ice. The formation of static ice in the absence of a leading edge
is also illustrated. Reaches with static shore ice near banks and accumulated cover in the center of the channel
are marked with both shades. Reaches between nodes 6 and 10 had such a formation. Vertical lines indicate
observed lengths and locations of ice-covered reaches on specific dates. Figure 30 shows variations of the mode
of formation for the ice cover along the river between 25 January and 2 February 1980.

The longitudinal profile and plan area distributions of the ice cover on various dates are shown in Figure 31.
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Figure 29. Time-dependent variation of the ice cover distribution along the river.
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Figure 30. Variation of the ice cover formation modes along the river.

This figure shows the evolution of the ice cover during the period of 22-30 January 1980. Large and small
thicknesses in the ice cover correspond to jammed and juxtaposed conditions. Thicker solid ice covers are found
in areas with thicker initial covers or frazil deposits. The shape of the average bed profile is shown in Figure
3la.

Figure 32 show variations of solid ice thickness at a number of locations with time. Figure 33 compares the
observed and simulated water surface elevations during the entire winter. This shows that the model is capable
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d. 28 January 1980.
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Figure 33. Observed and simulated water levels for the winter of 1980.

of simulating water level variations during both open water and ice-covered conditions. The error in the
simulation of water levels is larger during the ice-covered period because of the cumulative effect of errors in
the simulated ice cover area, the under-cover thickness and the resistance coefficients. Figure 34 shows the
water level differences between gauging stations. Simulated and observed head losses agree well except in the
Cardinal-Leishman Point region. Water level differences in this region can be due to inaccuracies in the
simulation of the undercover ice accumulation.
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Figure 34. Variations of head losses.
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Figure 35 shows the distribution of simulated
water temperatures along the river between 17 Jan-
uary and 30 January 1980. Subzero values represent
the existence of ice concentration.

Error analysis

Figure 36 shows the relationship between the ob--

served and simulated daily water levels. Graphical
comparisons of observed and simulated average
daily data provide qualitative information on the ac-
curacy of the simulation. The statistical parameters
developed in Appendix A can be used to quantify
errors of the simulation. Table 6 gives the defini-
tions of these parameters, which are useful in inter-
preting the results.

Table 7 compares all the statistical indicators at
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Figure 35. Water temperature profiles along the river
from 27 January to 30 January 1980.

all the water level observation stations. Values of the standard deviation of observed water levels 6y show that
water levels fluctuate more at locations closer to the power dam at the downstream end. This is because of
variations in the power demand and the relatively stable level at the outlet of Lake Ontario. The error terms e,,
ey, ep, € and e are also larger at the downstream end. However, values of the nondimensionalized parameters
V and p remain essentially constant along the river, showing that the model is capable of simulating water level

fluctuations along the entire river effectively.

In Table 7, e; and ¢, values are on the order of 0.1 m, indicating that the error involved in simulating water
levels is relatively small. Correlation coefficients between the observed and simulated water levels are on the
orderof0.97. Values of the parameter V are on the order of 0.9, indicating that the model is capable of simulating
variations of water levels accurately. Values of b and G, are approximately equal to 1.0 and Oy, respectively.

Table 6. Definitions of statistical parameters for the error

analysis.
Variable Definition
n Number of time steps (i = 1,2, . . ., n) or number of observations
Y; Observed value at time step §
Yi Simulated value at time step j
= Y,
Y Average of observed values, a0

n =
Oy Standard deviation of observed values, V _%:y_

y Averaged of simulated values, £2., y;

Oy Standard deviation of simulated values,

., (Yi-7)

Ymin  Minimum observed value
Ymax  Maximum observed value
Ymin Minimum simulated value
Ymax Maximumk simulated value

~Yi
€y Blas. z,_l yln i
e Average absolute error, —‘L'-l-y'—
ey Maximum positive error, Max(y, Y,) foralli
e, Maximum negative error, Max(Y; - y;) for all i
] A
e Standard error estimate, v E'ﬂ-(};:—y')z—
r Correlation coefficient between Y; and y; for all i
e
14 1-&
oy

ab Constants in a Y; = a + by; type model for all {
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Figure 36. Simulated and observed water levels, 1 January to 30 April 1980.
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Table 7. Statistical parameters for the water level simulations.

Variable Power Dam  Morrisburg  lroquois Cardinal Ogdenshurg
n 120 120 120 120 120
¥Y(m) 72.793 73.131 73.453 73.713 74.268
Gy (m) 0.5591 0.4649 0.3540 0.2859 0.1977
¥ (m) 72.812 73.147 73.437 73.7114 74.278
Gy (m) 0.5961 0.4629 0.3762 0.2981 0.1875
Ynin (M) 71.726 72.256 72.689 73.042 73.920
Y max(m) 73.798 73.868 73.996 74.219 74.673
Yemin (M) 71.428 72.046 72.524 72.9503 73.977
Fmax (M) 73.574 73.808 74.018 74.218 74.685
ey, (m) 0.0107 -0.0016 0.0175 0.0016 -0.0104
e, (m) 0.1214 0.1091 0.0759 0.0526 0.0368
e, (m) 0.3094 0.3434 0.2085 0.1606 0.1075
e, (m) 0.5285 0.4120 0.3474 0.2727 0.1416
eg (m) 0.1623 0.1425 0.1035 0.0710 0.0463
r 0.9624 0.9531 0.9624 0.9710 0.9736
vV 0.9150 0.9053 0.9137 0.9377 0.9446
a 7.0969 3.1215 6.9595 5.0654 -1.9690
b 0.9026 0.9571 0.9054 0.9313 1.0263

Table 8. Statistical parameters for simulated water

levelsat the power dam during ice-covered and open Table9. Statistical parameters for simulat-

water conditions. ed water temperatures.

Variable Combined Ice-covered Open water Variable  Clayton  Waddington _Power Dam
n 120 62 36 n 55 55 55
)% 72.792 72.470 73.352 Y (0 3.1465 2.1908 2.1994
Oy 0.5591 0.4029 0.1326 oy (°C) 1.8148 1.9107 1.9879
y 72.701 72.5084 73.3504 y (°C) 2.9982 2.0108 1.8915
Oy 0.6504 0.4336 0.0979 o, (°C) 1.5956 1.6550 1.6521
Ymin 72.7126 71.924 73.015 Ymin °C)  0.5000 0.0000 1.1100
Yinax 73.798 73.368 73.579 Ymax (°C)  6.5500 6.0500 0.3278
Ymin 71.428 72.000 73.1741 Ymin (°C) 0.8614 0.0000 0.0000
Ymax 73.576 73.339 73.5741 Ymax CC)  5.8814 5.2456 4.9903
ey 0.0913 -0.0383 0.0018 e, (°C) 0.1484 0.1799 0.3078
€ 0.11382 0.125 0.0665 e, (°C) 0.4176 0.5817 0.6113
- 0.2193 0.3094 0.2171 g, (°C) 0.8438 1.0181 0.9239
en 0.5252 0.3225 0.2307 e, (°C) 1.0723 2.1914 2.6079
e 0.1954 0.1499 0.0850 e, (°C) 0.5119 0.7753 0.8792
r 0.9701 0.9416 0.7604 r 0.9661 0.9187 0.9120
1 0.8768 0.8593 0.5776 14 0.9189 0.8322 0.3007
a 12.1631 9.0234 -2.1746 a -0.1478 0.0579 0.1236
b 0.8339 0.8750 1.0297 b 1.0987 1.0606 1.0974

This indicates that simulated variations are close to the observed variations. Values of b < 1 and 6, <Gy indicate
that simulated variations are slightly larger than the observed variations.

Table 8 shows a comparison of water level predictabilities during open water and ice-covered conditions.
As expected, this table shows that simulations during ice-covered conditions are not as good as those during
open water conditions.

Table 9 summarizes the error indicators for water temperature simulations. Values of eg and e, show that the
error involved in the simulation is about 0.5°C. Because water temperature stations are often located near the
bank and because of the accuracy of the temperature data, this error is acceptable. Values of r and V suggest
that the model can simulate variations of water temperature satisfactorily.

The error indicators could not be developed for variables such as ice cover area and thickness because of the
limited availability of observed data. Errors in simulations as measured by the error variance es2 can be due to
anumberof sources. The component due to observational error can only be reduced through accurate instrumen-
tation and better observation station locations. One of the major error sources is the water iemperature data. The
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effect of stratification in the upstream region, which cannot be modeled accurately due to lack of data, can also
have an important effect on the ice condition. A second component of error variance due to bias es2 can usually
be eliminated by proper calibration. The part of the error due to the one-dimensional approximation is also
unavoidable. A significant part of the error is due to shortcomings in the existing theories onriver ice processes.
These can be improved only when better theories become available. These shortcomings coveralmost all of the
river ice processes, including formation of frazil and skim ice, ice jam formation, shore ice accumulation,
hanging dam formations or undercover erosion and deposition, and ice cover resistance coefficient.

Summary and conclusion

In this study a one-dimensional model is developed for simulating river ice processes. The model is capable
of simulating time-dependent conditions of the river hydraulics, water temperature and ice concentration, for-
mation of an ice cover, undercover accumulation, thermal growth and decay of the ice cover, and mechanical
stability of the cover. In the river hydraulics component, the flow condition is determined by an implicit finite-
difference solution of one-dimensional unsteady flow equations. In the thermal component, distributions of
water temperature and ice concentration are determined by a Lagrangian—Eulerian solution scheme for equa-
tions of transport of thermal energy and ice. A two-layer formulation is introduced to model the ice transport.
In this formulation the total ice discharge is considered to consist of the surface ice discharge and the discharge
of suspended ice distributed over the depth of the flow. The effect of surface ice on ice production as well as
formations of skim ice and border ice are included. The dynamic formation and stability of the ice cover is
formulated according to existing equilibrium ice jam theories with due consideration to the interaction between
the ice cover and the flow. The undercover ice accumulation is formulated according to the critical velocity cri-
terion. The growth and decay of the ice cover is simulated using a finite-difference formulation applicable to
composite ice covers consisting of snow, ice and frazil layers. The model has been applied to the upper St. Law-
rence River and the Ohio River system with good results. With the generic nature of the model structure, the
model can be applied to other rivers. In view of the limited current understanding on river ice processes, further
improvements of the model should be made when improved theoretical formulations become available. The
model can assist the development of new formulations by analyzing field data in a comprehensive manner.
Further improvements on modeling techniques are also possible by including some important two-dimensional
aspects of ice processes.
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APPENDIX A: ERROR ANALYSIS

The validity of a simulation model can be determined by comparing the simulated results with observed data.
The mostcommon method of comparison is by graphically comparing observed and simulated results. Graphi-
cal comparison gives aqualitative estimate of the accuracy of the model. Quantitative evaluation of a simulation
model can be obtained using error estimates. Some of the indicators are similar to those used in the analysis of
variance.

Consider a sequence of observations where Y; and corresponding simulated values y; where i = 1,2,...,n are
the observation numbers. The error ¢; of any observation i is

ei=yi-Y, fori=12,..n (Al)
where n is the number of observations. The error e; can be positive or negative. During an enure simulation,

e; can fluctuate around a nonzero value. This value differs from the actual average value by an a:nount called
the bias:

bias = ep =

e - alyi- Yi) (A2)
n

n

Bias can be reduced to zero by calibration. In the case of the bed roughness calibration in the present study, the
objective was to obtain zero bias for all observation stations. Zero bias does not guarantee error-free simulation.
The error in a simulation can also be computed as an average absolute error:

Z'.l_ yi - Yi
average absolute error =e, = —"—'[n—'——'l . (A3)
A better indicator of error, which can also be used in variance analysis, is the standard error estimate:
) sn_ Y 27172
standard error estimate = e =[L(‘;'—'): . (Ad)

Both e, and e are always nonzero, even in the case of e, = 0, unless observations at all time steps exactly match
with simulated values. During the calibration of parameters, minimization of e, and e, can be used as the
objective functions for optimization. Minimization of the absolute value of maximum positive error e, or
negative error e, is also a commonly used objective function. The phase lag between observed and simulated
results can also be used as an error indicator.

Theerrorterm, whichis measured by e, or e, can be due toanumber of causes such as: a) physical phenomer.a
that were not formulated correctly; b) errors introduced in the numerical procedure; ¢) measurement errors in
the observations and d) incomplete calibration. A complete error analysis has to be able to separate contributions
to the error variance eg from these effects. The current analysis only computes ¢2.

The standard error estimate ¢, alone is not capable of measuring the capability of the model to simulate
variations. The model should be capable of simulating a known variation of the output variable as closely as
possible to its observation. A simple correlation estimation and an analysis of variance is useful in developing
an indicator capable of measuring this property in a model. The cori clation coe ¢ *=nt between observed and
simulated values is defined as

(= i -9 (vi - Y)P

ol VP T (v - ﬂz

-2

! (AS)

where

Y=Y 7Y, (A6)
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where
_.n
Y=37Y; (A6)

and

~|
I
™a
«

(A7)

~
]
-—

The coefficient of correlation r ranges between { and 1. A perfect model will have r = 1. Values of r closer to
1 indicate better simulations. A value of r < 0.6 indicates either that the simulation model is unsuccessful or that
the data set used is not capable of supporting the hypothesis that the model is capable of simulating the variation
in the observations.

In addition to determining various error terms, an analysis of the behavior of the simulated result in relation
to observed results is useful. The best method to determine this behavior in a statistical sense is to obtain a
relationship between simulated and observed results. The simplest relationship possible is a linear one:

Yi=a+by; fori=12,.n. (A8)

The value of r obtained from eq AS can also be obtained by simple linear regression of ¥; and y, . Values of a
and b can be used to check the effectiveness of the model. For the perfect model, a =0 and b= 1. Any deviation
from these values indicates an error in the simulation. The coefficient b gives a statistical estimate for the
amplification by the simulation model. Amplification = dy;/dY; = 1/b. When 1/b > 1, a magnification of the
variation by the simulation model is indicated, while| a| > 0 indicated the presence of a bias. Amplification of
the standard deviation s,/sy can be related to the average amplification 1/b, using the following equation:

2 {yi - y) _

(i~ Y)Y

The above analysis can be extended and used to explain the overall behavior of simulated results using four
statistical parameters. Parameters a, b, k and e,, can be used as statistical estimators of bias, amplification. lag
and standard error, respectively. Figure Al shows the effect of these parameters graphically. Using these
parameters, the observed results can be related to simulated results using

(A9)

Y; = a + by wiey (A10)

where & = lag
ey, = standard deviation of remaining error
w; = white noise.

By fitting this model, any error term that cannot be explained using a gross amplification or a bias is assumed
as a random error. Lag & for the best fit of e A10 is the lag for maximum cross correlation between y, and ¥;:

_ [z (i V) G =9

= n Y n 2"
(i~ P (Y- Yy

Parameters « and b can be determined by linear regression. Both @ # 0 and b # 1 indicate mostly improper

cahbration or weaknesses of the model. Their values can suggest the type of parameters to be improved. The
parameter e, is the remaining standard error to be explained by improving the model.

(A1D)
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Figure Al. Components of the simulation error.

The effectiveness of the model can also be determined using methods similar to those used in the analysis
of variance. Considering that the purpose of the model is to explain the total variation of the observations,
components of the variation can be expressed using the following terms:

n
Total sum of squares = SST = 2 (Yi - 7)2 =noy (A12)
i=1
and
z vl
SSE = error sum of squares = Z (Yi - y;f =nel. (A13)

i=1
If the model is calibrated to make the bias e, =0, theny = Y ,and the percentage variation explained for b =
lis
_ SST-SSE
SST

14

_ Vvariation explained by the model (Al4)
total variation

where V is the percentage variation explained (r2). Although the bias has not been eliminated in the current
model and a # 0 and b # 1, the same indicator can be used to explain the effectiveness of the model:

y_SST-SSE__, Zbi-Yif _,_

2
Yi L (A15)
SST I (vi- v oy

where Oy is the variance of ¥;, i = 1,2,...n. V is defined as in eq A15 because it is similar to the definition of
percentage variation explained in the linear regression analysis.
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The part of SSE due to parameter estimation errors can be easily separated if the parameter sensitivities are
known. Let the simulated result of k* system variable as a function of the parameters 6,,8,,...6,, be
¥k(64.05,...8,) = 0. A small change in the variables can be related to the changes in parameters as

0 dy
Ay, = % 20, + Pk pp, + . ..+ Pk Ag (A16)
k 891 1 892 2 3 m

m

where % , -aa-;—k are the sensitivities of the variable to the parameters. Equation A16 can be used to write an
1 2

expression for the variance of yy, assuming that the above partial differentials or sensitivities are finite and have

constant values for a given set of parameters:

2 2
o§k=(§!—‘£) 03,+(g%'2‘-) Ob, + ...+

i )26
" (A17)
%, 3

3,

If the standard error variances of the parameters and the sensitivities are known, the error variance of the simu-
lated result due to parameter errors can be determined using eq A17. This is the part of the total error variance
2 explained by parameter errors. The remaining error variance is due to errors in the observations and the gen-
eral model structure itself.
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